On-Demand Videos

Real-time OLAP databases are optimized for speed and often rely on tightly coupled storage-compute architectures using disks or SSDs. Decoupled architectures, which use cloud object storage, introduce an unavoidable tradeoff: cost efficiency at the expense of performance. This makes them unsuitable for databases that need to provide low-latency, real-time analytics, especially the new wave of LLM-powered dashboards, retrieval-augmented generation (RAG), and vector-embedding searches that thrive only when fresh data is milliseconds away. Can we achieve both cost efficiency and performance?
In this talk, we’ll explore the engineering challenges of extending Apache Pinot—a real-time OLAP system—onto cloud object storage while still maintaining sub-second P99 latencies.
We’ll dive into how we built an abstraction in Apache Pinot to make it agnostic to the location of data. We’ll explain how we can query data directly from the cloud (without needing to download the entire dataset, as with lazy-loading) while achieving sub-second latencies. We’ll cover the data fetch and optimization strategies we implemented, such as pipelining fetch and compute, prefetching, selective block fetches, index pinning, and more. We'll also share our latest work about integration with open table formats like iceberg, and how we will continue to achieve fast analytics directly on parquet files by implementing all the same techniques that apply to tiered storage.

The data lake is a fantastic, low-cost place to put data at rest for offline analytics, but we've built it under the terms of a terrible bargain: all that cheap storage at scale was a great thing, but we gave up schema management and transactions along the way. Apache Iceberg has emerged as king of the Open Table Formats to fix this very problem.
Built on the foundation of Parquet files, Iceberg adds a simple yet flexible metadata layer and integration with standard data catalogs to provide robust schema support and ACID transactions to the once ungoverned data lake. In this talk, we'll build Iceberg up from the basics, see how the read and write path work, and explore how it supports streaming data sources like Apache Kafka™. Then we'll see how Confluent's Tableflow brings Kafka together with open table formats like Iceberg and Delta Lake to make operational data in Kafka topics instantly visible to the data lake without the usual ETL—unifying the operational/analytical divide that has been with us for decades.

Storing data as Parquet files on S3 is increasingly used not just as a data lake but also as a lightweight feature store for ML training/inference or a document store for RAG. However, querying petabyte- to exabyte-scale data lakes directly from cloud object storage remains notoriously slow (e.g., latencies ranging from hundreds of milliseconds to several seconds on AWS S3).
In this talk, we show how architecture co-design, system-level optimizations, and workload-aware engineering can deliver over 1000× performance improvements for these workloads—without changing file formats, rewriting data paths, or provisioning expensive hardware.
We introduce a high-performance, low-latency S3 proxy layer powered by Alluxio, deployed atop hyperscale data lakes. This proxy delivers sub-millisecond Time-to-First-Byte (TTFB)—on par with Amazon S3 Express—while preserving compatibility with standard S3 APIs. In real-world benchmarks, a 50-node Alluxio cluster sustains over 1 million S3 queries per second, offering 50× the throughput of S3 Express for a single account, with no compromise in latency.
Beyond accelerating access to Parquet files byte-to-byte, we also offload partial Parquet processing from query engines via a pluggable interface into Alluxio. This eliminates the need for costly index scans and file parsing, enabling point queries with 0.3 microseconds latency and up to 3,000 QPS per instance (measured using a single-thread)—a 100× improvement over traditional query paths.
.png)
Alluxio Innovations for Structured Data from Alluxio, Inc.
The Data Flywheel is a comprehensive and additive approach for business and technology leaders to enable organizations to get the most value from their data. In this session, we will share common design patterns AWS customers are applying as part of their Data and AI journey. It will include real world examples. Modern Data Platforms – Thinking Data Flywheel on the Cloud from Alluxio, Inc.
Challenge And Evolution Of Data Orchestration at Rakuten Data System from Alluxio, Inc.
At Ryte, we analyze unstructured, semi-structured and structured data for more than one million users worldwide. The whole Ryte-Platform is built with a scalable architecture to support our heavy load and make it possible for our customers to drill-down from a high-level overview into the last byte of their websites. Presto + Alluxio on steroids a romantic drama on Production with happy end from Alluxio, Inc.
Alluxio core maintainers and founding engineers share the latest innovations in Alluxio 2. Alluxio 2 Community Update from Alluxio, Inc.
Presto, an open source distributed SQL engine, is widely recognized for its low-latency queries, high concurrency, and native ability to query multiple data sources. Proven at scale in a variety of use cases at Airbnb, Comcast, GrubHub, Facebook, FINRA, LinkedIn, Lyft, Netflix, Twitter, and Uber, in the last few years Presto experienced an unprecedented growth in popularity in both on-premises and cloud deployments over Object Stores, HDFS, NoSQL and RDBMS data stores.
This talk will discuss best use cases for Presto from the Data Engineer’s perspective. In addition, we will present the recent Presto advancements such as Cost-Based Optimizer, Kubernetes-native deployment and the project roadmap going forward.
Today, one can easily launch or terminate services with hundreds or thousands of compute instances in just a few seconds on cloud services such as AWS. However, operating, monitoring and maintaining those resources could also easily become a nightmare if the corresponding systems were not designed in a cloud-native way.
In this talk, we share our lessons in building and rebuilding our monitoring systems and data platforms at Electronic Arts (EA). In the first generation of the monitoring system, configurations were manually created for many individual software components and spread over all the resources. As services were started and terminated rapidly over time, it was extremely difficult to keep all configurations up to date. Consequently, on average we received over 1,000 alerts from thousands of machines on a daily basis, which stressed the operations team. We redesigned the system in late 2018 in a project called Monitoring As Code (MAC) emphasizing on version control and automation. MAC manages all the configurations using a GIT project in the same way as software code. Moreover, it establishes standards so that the configurations are automatically generated and deployed to keep everything in sync. As a result, it reduced the daily average number of alerts by two orders of magnitude.
In the first generation of the data platform, we used HDFS as a cache layer between ETL jobs and the underlying AWS storage service S3. However, HDFS is not a special-purpose cache service, so custom code is needed to make it work like a cache. We have to run a backup workflow in every ETL job to backup data to S3 and sync the metadata store of the ETL jobs running on HDFS and that of interactive analytic queries running directly on S3. Moreover, we rely on complex and fragile mechanisms for purging datasets when the clusters are under heavy load. The use of HDFS also makes it a challenge to rapidly scale up the YARN cluster during peak hours and scale it down during off-hours. We are currently redesigning the data platform, mainly by replacing HDFS with a special-purpose data orchestration service called Alluxio. In our initial evaluation, Alluxio not only provides better performance than HDFS but also significantly simplifies the architecture of our data platform and makes it easy to scale up and down and paves the way to a cloud native ETL processing stack.
This DATA ORCHESTRATION SUMMIT session talks about challenges associated with querying diverse data sources at Walmart and how those are tackled using Presto & Alluxio.
How Alluxio caching was leveraged to provide consistent optimized query performance within and across clouds.
Also highlights implementation of critical components for Enterprise acceleration offering such as security integration for fine grained access control, auto-scaling & auto deployment in GCP.
In this panel, creators of open source projects share their stories from why they started the project to the challenges they encountered on the way.
Spark is a widely adopted open source framework that provides a unified interface for analytics and machine learning workloads. Alluxio, originating from the UC Berkeley AMPLab – the same lab as Spark, is an open source data orchestration platform that empowers compute frameworks like Spark by providing stateful caching to enable efficient data sharing between multiple jobs and improving resilience against job failures as well as bringing data together from many different sources, be it remote HDFS or cloud object stores.
Alluxio partnered with IBM to deliver a Spark-based solution to provide fast data analytics. With the integration of IBM Spectrum Conductor, an advanced workload and resource management platform that maximizes hardware utilization to speed results and cut infrastructure costs, Alluxio and IBM delivered a solution that powers leading telecom company’s applications to support 320 million subscribers. In this online meetup, we will present the benefits of the fast analytics stack of Spark on Alluxio and IBM and dive into a leading telecom’s use case of leveraging Spark and Alluxio to process massive amounts of mobile data.
In this online meetup, you will learn about:
- Why the leading companies are moving towards a decoupled compute and storage architecture, and the associated challenges and requirements.
- Why Spark and Alluxio together can solve the challenges and fulfill the requirements
- How leading telecom leverages Spark with Alluxio for fast data processing at scale on top of object store and HDFS
Using “zero-copy” hybrid bursting with Spark to solve capacity problems
Want to leverage your existing investments in Hadoop with your data on-premise and still benefit from the elasticity of the cloud?
Like other Hadoop users, you most likely experience very large and busy Hadoop clusters, particularly when it comes to compute capacity. Bursting HDFS data to the cloud can bring challenges – network latency impacts performance, copying data via DistCP means maintaining duplicate data, and you may have to make application changes to accomodate the use of S3.
“Zero-copy” hybrid bursting with Alluxio keeps your data on-prem and syncs data to compute in the cloud so you can expand compute capacity, particularly for ephemeral Spark jobs.
In this tech talk, we’ll discuss:
- Approaches to burst data to the cloud
- How Alluxio can enable “zero-copy” bursting of Spark workloads to cloud data services like EMR and Dataproc
- How DBS Bank uses Alluxio to solve for limited on-prem compute capacity by zero-copy bursting Spark workloads to AWS EMR
The data ecosystem has heavily evolved over the past two decades. There’s been an explosion of data-driven frameworks, such as Presto, Hive, and Spark to run analytics and ETL queries and TensorFlow and PyTorch to train and serve models. On the data side, the approach to managing and storing data has evolved from HDFS to cheaper, more scalable and separated services typified by cloud stores like AWS S3. As a result, data engineering has become increasingly complex, inefficient, and hard, particularly in hybrid and cloud environments.
Haoyuan Li offers an overview of a data orchestration layer that provides a unified data access and caching layer for single cloud, hybrid, and multicloud deployments. It enables distributed compute engines like Presto, TensorFlow, and PyTorch to transparently access data from various storage systems (including S3, HDFS, and Azure) while actively leveraging an in-memory cache to accelerate data access.