tf.data is the recommended API for creating TensorFlow input pipelines and is relied upon by countless external and internal Google users. The API enables you to build complex input pipelines from simple, reusable pieces and makes it possible to handle large amounts of data, different data formats, and perform complex transformations. In this talk, I will present an overview of the project and highlight best practices for creating performant input pipelines.
tf.data is the recommended API for creating TensorFlow input pipelines and is relied upon by countless external and internal Google users. The API enables you to build complex input pipelines from simple, reusable pieces and makes it possible to handle large amounts of data, different data formats, and perform complex transformations. In this talk, I will present an overview of the project and highlight best practices for creating performant input pipelines.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
In this talk, Ojus Save walks you through a demo of how to build AI applications on Zoom. This demo shows you an AI agent that receives transcript data from RTMS and then decides if it has to create action items based on the transcripts that are received.
In this talk, Sandeep Joshi, , Senior Manager at NVIDIA, shares how to accelerate the data access between GPU and storage for AI. Sandeep will dive into two options: CPU- initiated GPUDirect Storage and GPU-initiated SCADA.
Bin Fan, VP of Technology at Alluxio, introduces how Alluxio, a software layer transparently sits between application and S3 (or other object stores), provides sub-ms time to first byte (TTFB) solution, with up to 45x lower latency.