The DBS team was tasked to solve their compute capacity problem. They wanted to provide faster insights and analyze data for a range of use cases but didn’t have the ability to scale compute elastically on-prem.
One use case that challenged them was customer call analysis. With the millions of customer calls they get every year, DBS manages over 50TB of customer data and audio files. This data needed to reside on-prem for compliance reasons. With on-prem compute limitations, they looked to the public cloud to analyze this data and selected “zero-copy” bursting as the best approach.
In this tech talk, we’ll discuss why DBS turned to Alluxio’s bursting approach to help solve these challenges. Vitaliy Baklikov, SVP at DBS, will discuss:
- Challenges and inefficiencies with their prior data stack
- Moving to a disaggregated data stack using Alluxio
- Bursting data without persisting in the cloud
- An overview of Alluxio’s “zero-copy” hybrid bursting solution
The DBS team was tasked to solve their compute capacity problem. They wanted to provide faster insights and analyze data for a range of use cases but didn’t have the ability to scale compute elastically on-prem.
One use case that challenged them was customer call analysis. With the millions of customer calls they get every year, DBS manages over 50TB of customer data and audio files. This data needed to reside on-prem for compliance reasons. With on-prem compute limitations, they looked to the public cloud to analyze this data and selected “zero-copy” bursting as the best approach.
In this tech talk, we’ll discuss why DBS turned to Alluxio’s bursting approach to help solve these challenges. Vitaliy Baklikov, SVP at DBS, will discuss:
- Challenges and inefficiencies with their prior data stack
- Moving to a disaggregated data stack using Alluxio
- Bursting data without persisting in the cloud
- An overview of Alluxio’s “zero-copy” hybrid bursting solution
The DBS team was tasked to solve their compute capacity problem. They wanted to provide faster insights and analyze data for a range of use cases but didn’t have the ability to scale compute elastically on-prem.
One use case that challenged them was customer call analysis. With the millions of customer calls they get every year, DBS manages over 50TB of customer data and audio files. This data needed to reside on-prem for compliance reasons. With on-prem compute limitations, they looked to the public cloud to analyze this data and selected “zero-copy” bursting as the best approach.
In this tech talk, we’ll discuss why DBS turned to Alluxio’s bursting approach to help solve these challenges. Vitaliy Baklikov, SVP at DBS, will discuss:
- Challenges and inefficiencies with their prior data stack
- Moving to a disaggregated data stack using Alluxio
- Bursting data without persisting in the cloud
- An overview of Alluxio’s “zero-copy” hybrid bursting solution
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.