Google Cloud Dataproc is a widely used fully managed Spark and Hadoop service to run big data analytics and compute workloads in the cloud. Services like Dataproc reduce hardware spend, eliminate the need to overbuy capacity, and provide business agility. Yet users still face challenges for performance sensitive workloads or workloads running on remote data.
Alluxio is an open source cloud data orchestration platform that increases performance of analytic workloads running on Dataproc by intelligently caching data and bringing back lost data locality. Alluxio also enables users to run compute workloads against on-prem storage like Hadoop HDFS without any app changes.
Chris Crosbie and Roderick Yao from the Google Dataproc team and Dipti Borkar of Alluxio demo how to set up Google Cloud Dataproc with Alluxio so jobs can seamlessly read from and write to Cloud Storage. They also show how to run Dataproc Spark against a remote HDFS cluster.
Google Cloud Dataproc is a widely used fully managed Spark and Hadoop service to run big data analytics and compute workloads in the cloud. Services like Dataproc reduce hardware spend, eliminate the need to overbuy capacity, and provide business agility. Yet users still face challenges for performance sensitive workloads or workloads running on remote data.
Alluxio is an open source cloud data orchestration platform that increases performance of analytic workloads running on Dataproc by intelligently caching data and bringing back lost data locality. Alluxio also enables users to run compute workloads against on-prem storage like Hadoop HDFS without any app changes.
Chris Crosbie and Roderick Yao from the Google Dataproc team and Dipti Borkar of Alluxio demo how to set up Google Cloud Dataproc with Alluxio so jobs can seamlessly read from and write to Cloud Storage. They also show how to run Dataproc Spark against a remote HDFS cluster.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

