If you’re a MapR user, you might have concerns with your existing data stack. Whether it’s the complexity of Hadoop, financial instability and no future MapR product roadmap, or no flexibility when it comes to co-locating storage and compute, MapR may no longer be working for you.
Alluxio can help you migrate to a modern, disaggregated data stack using any object store with the similar performance of Hadoop plus significant cost savings.
Join us for this tech talk where we’ll discuss how to separate your compute and storage on-prem and architect a new data stack that makes your object store the core. We’ll show you how to offload your MapR/HDFS compute to any object store and how to run all of your existing jobs as-is on Alluxio + object store.
If you’re a MapR user, you might have concerns with your existing data stack. Whether it’s the complexity of Hadoop, financial instability and no future MapR product roadmap, or no flexibility when it comes to co-locating storage and compute, MapR may no longer be working for you.
Alluxio can help you migrate to a modern, disaggregated data stack using any object store with the similar performance of Hadoop plus significant cost savings.
Join us for this tech talk where we’ll discuss how to separate your compute and storage on-prem and architect a new data stack that makes your object store the core. We’ll show you how to offload your MapR/HDFS compute to any object store and how to run all of your existing jobs as-is on Alluxio + object store.
If you’re a MapR user, you might have concerns with your existing data stack. Whether it’s the complexity of Hadoop, financial instability and no future MapR product roadmap, or no flexibility when it comes to co-locating storage and compute, MapR may no longer be working for you.
Alluxio can help you migrate to a modern, disaggregated data stack using any object store with the similar performance of Hadoop plus significant cost savings.
Join us for this tech talk where we’ll discuss how to separate your compute and storage on-prem and architect a new data stack that makes your object store the core. We’ll show you how to offload your MapR/HDFS compute to any object store and how to run all of your existing jobs as-is on Alluxio + object store.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.