Products
Blog

Make Multi-GPU Cloud AI a Reality
If you’re building large-scale AI, you’re already multi-cloud by choice (to avoid lock-in) or by necessity (to access scarce GPU capacity). Teams frequently chase capacity bursts, “we need 1,000 GPUs for eight weeks,” across whichever regions or providers can deliver. What slows you down isn’t GPUs, it’s data. Simply accessing the data needed to train, deploy, and serve AI models at the speed and scale required – wherever AI workloads and GPUs are deployed – is in fact not simple at all. In this article, learn how Alluxio brings Simplicity, Speed, and Scale to Multi-GPU Cloud deployments.

Alluxio's Strong Q2: Sub-Millisecond AI Latency, 50%+ Customer Growth, and Industry-Leading MLPerf Results
Alluxio's strong Q2 featured Enterprise AI 3.7 launch with sub-millisecond latency (45× faster than S3 Standard), 50%+ customer growth including Salesforce and Geely, and MLPerf Storage v2.0 results showing 99%+ GPU utilization, positioning the company as a leader in maximizing AI infrastructure ROI.
.png)
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
.jpeg)
Metadata Synchronization in Alluxio Design Implementation and Optimization
Metadata synchronization (sync) is a core feature in Alluxio that keeps files and directories consistent with their source of truth in under storage systems, thus making it simple for users to reason the data retrieved from Alluxio. Meanwhile, understanding the internal process is important in order to tune the performance. This article describes the design and the implementation in Alluxio to keep metadata synchronized.
No items found.
.jpeg)
Whats New in Alluxio 2.7: Enhanced Scalability Stability and Major Improvements in AIML Training Efficiency
No items found.
.jpeg)
Presto with Alluxio Overview Architecture Evolution for Interactive Queries
Alluxio is the data orchestration platform to unify data silos across heterogeneous environments. The following blog will discuss the architecture combining Spark with Alluxio.
Data Migration
Large Scale Analytics Acceleration

Speeding Up the Atlas Supercomputing Platform with Fluid Alluxio
Unisound is an artificial intelligence company focusing on Internet of Things services. Unisound’s AI technology stacks include the perception and expression capabilities of signals, voices, images, and texts, and the cognitive technologies such as knowledge, understanding, analysis, and decision-making, towards a multi-modal AI system. Atlas is the supercomputing platform supporting all kinds of AI applications including model training and reasoning inferencing.
Model Training Acceleration
Data Migration
GPU Acceleration
.jpeg)
Alluxio Use Cases Overview: Unify silos with Data Orchestration
This blog is the first in a series introducing Alluxio as the data platform to unify data silos across heterogeneous environments. The next blog will include insights from PrestoDB committer Beinan Wang to uncover the value for analytics use cases, specifically with PrestoDB as the compute engine.
Hybrid Multi-Cloud
Data Migration
Cloud Cost Savings
Large Scale Analytics Acceleration
Model Training Acceleration
.jpeg)
What's New in Alluxio 2.6: Better Performance for AIML Workloads plus Increased Operating Metrics Visibility
Alluxio 2.6 significantly improves the performance of data-intensive AI/ML workloads across any storage, and also improves the general maintainability and visibility of Alluxio clusters, especially for large-scale deployments. We have taken the feedback and contributions from the community and introduced features which simplify deployment, introduce new data management capabilities, optimize performance, and provide enhanced visibility into system behavior.
No items found.

Whats new in Alluxio 2.5
Alluxio 2.5 focuses on improving interface support to broaden the set of data driven applications which can benefit from data orchestration. The POSIX and S3 client interfaces have greatly improved in performance and functionality as a result of the widespread usage and demand from AI/ML workloads and system administration needs. Alluxio is rapidly evolving to meet the needs of enterprises that are deploying it as a key component of their AI/ML stacks.
No items found.
.jpeg)
Accelerating Analytics and AI with Alluxio and NVIDIA GPUs
Data processing is increasingly making use of NVIDIA computing for massive parallelism. Advancements in accelerated compute mean that access to storage must also be quicker, whether in analytics, artificial intelligence (AI), or machine learning (ML) pipelines.
GPU Acceleration
Large Scale Analytics Acceleration
Model Training Acceleration
.jpeg)
Bursting Your On-Premises Data Lake Analytics and AI Workloads on AWS
This post outlines a solution for building a hybrid data lake with Alluxio to leverage analytics and AI on Amazon Web Services (AWS) alongside a multi-petabyte on-premises data lake. Alluxio’s solution is called “zero-copy” hybrid cloud, indicating a cloud migration approach without first copying data to Amazon Simple Storage Service (Amazon S3).
Hybrid Multi-Cloud
Data Migration
Large Scale Analytics Acceleration

Building High-Performance Data Lake Using Apache Hudi and Alluxio at T3Go
How T3Go's high-performance data lake using Apache Hudi and Alluxio shortened the time for data ingestion into the lake by up to a factor of 2. Data analysts using Presto, Hudi, and Alluxio in conjunction to query data on the lake saw queries speed up by 10 times faster.
Large Scale Analytics Acceleration

Announcing Alluxio Data Orchestration Hub
We’re pleased to announce the general availability of Alluxio Data Orchestration Hub, your single pane of glass to orchestrate data for analytics and AI. The data ecosystem is complex with the separation of storage and compute across data centers and cloud providers. With this release we’ve made great strides towards simplifying data access and management across multiple environments.
Large Scale Analytics Acceleration
.jpeg)
Data Consistency Model in Alluxio
Unlike HDFS which provides one-copy update semantics or AWS S3 which provides eventual consistency, data consistency in Alluxio is a bit more complicated and depends on the configuration. In short, when clients are only reading and writing through Alluxio, the Alluxio file system provides strong consistency. However, when clients are writing data across both Alluxio and under storage, the consistency may depend on the write type and under storage type.
No items found.
Your selections don't match any items.
