Enterprises are adopting big data technologies to analyze and derive insight from their growing volumes of structured and unstructured data. A familiar problem is the requirement to analyze data from multiple independent storage silos concurrently. In order to consolidate the data, large enterprises typically use custom solutions or build a data lake. These approaches present additional challenges and can be costly and time consuming. Alluxio helps organizations handle their big data by providing a unified view of all of the data in your enterprise – on premise, in the cloud, or hybrid. Applications access data using a standard interface to a global virtual namespace. Alluxio also employs a memory-centric architecture to enable data access at memory speed. With the combined unification and performance benefits, Alluxio can effectively provide big data federation for organizations by acting as a virtual data lake. We just published a whitepaper that goes into more detail on this common use case, you can access it here:Structured Big Data Federation Using Alluxio.
.png)
Blog

In this blog, Greg Lindstrom, Vice President of ML Trading at Blackout Power Trading, an electricity trading firm in North American power markets, shares how they leverage Alluxio to power their offline feature store. This approach delivers multi-join query performance in the double-digit millisecond range, while maintaining the cost and durability benefits of Amazon S3 for persistent storage. As a result, they achieved a 22 to 37x reduction in large-join query latency for training and a 37 to 83x reduction in large-join query latency for inference.

In the latest MLPerf Storage v2.0 benchmarks, Alluxio demonstrated how distributed caching accelerates I/O for AI training and checkpointing workloads, achieving up to 99.57% GPU utilization across multiple workloads that typically suffer from underutilized GPU resources caused by I/O bottlenecks.