On-Demand Videos

Real-time OLAP databases are optimized for speed and often rely on tightly coupled storage-compute architectures using disks or SSDs. Decoupled architectures, which use cloud object storage, introduce an unavoidable tradeoff: cost efficiency at the expense of performance. This makes them unsuitable for databases that need to provide low-latency, real-time analytics, especially the new wave of LLM-powered dashboards, retrieval-augmented generation (RAG), and vector-embedding searches that thrive only when fresh data is milliseconds away. Can we achieve both cost efficiency and performance?
In this talk, we’ll explore the engineering challenges of extending Apache Pinot—a real-time OLAP system—onto cloud object storage while still maintaining sub-second P99 latencies.
We’ll dive into how we built an abstraction in Apache Pinot to make it agnostic to the location of data. We’ll explain how we can query data directly from the cloud (without needing to download the entire dataset, as with lazy-loading) while achieving sub-second latencies. We’ll cover the data fetch and optimization strategies we implemented, such as pipelining fetch and compute, prefetching, selective block fetches, index pinning, and more. We'll also share our latest work about integration with open table formats like iceberg, and how we will continue to achieve fast analytics directly on parquet files by implementing all the same techniques that apply to tiered storage.

The data lake is a fantastic, low-cost place to put data at rest for offline analytics, but we've built it under the terms of a terrible bargain: all that cheap storage at scale was a great thing, but we gave up schema management and transactions along the way. Apache Iceberg has emerged as king of the Open Table Formats to fix this very problem.
Built on the foundation of Parquet files, Iceberg adds a simple yet flexible metadata layer and integration with standard data catalogs to provide robust schema support and ACID transactions to the once ungoverned data lake. In this talk, we'll build Iceberg up from the basics, see how the read and write path work, and explore how it supports streaming data sources like Apache Kafka™. Then we'll see how Confluent's Tableflow brings Kafka together with open table formats like Iceberg and Delta Lake to make operational data in Kafka topics instantly visible to the data lake without the usual ETL—unifying the operational/analytical divide that has been with us for decades.

Storing data as Parquet files on S3 is increasingly used not just as a data lake but also as a lightweight feature store for ML training/inference or a document store for RAG. However, querying petabyte- to exabyte-scale data lakes directly from cloud object storage remains notoriously slow (e.g., latencies ranging from hundreds of milliseconds to several seconds on AWS S3).
In this talk, we show how architecture co-design, system-level optimizations, and workload-aware engineering can deliver over 1000× performance improvements for these workloads—without changing file formats, rewriting data paths, or provisioning expensive hardware.
We introduce a high-performance, low-latency S3 proxy layer powered by Alluxio, deployed atop hyperscale data lakes. This proxy delivers sub-millisecond Time-to-First-Byte (TTFB)—on par with Amazon S3 Express—while preserving compatibility with standard S3 APIs. In real-world benchmarks, a 50-node Alluxio cluster sustains over 1 million S3 queries per second, offering 50× the throughput of S3 Express for a single account, with no compromise in latency.
Beyond accelerating access to Parquet files byte-to-byte, we also offload partial Parquet processing from query engines via a pluggable interface into Alluxio. This eliminates the need for costly index scans and file parsing, enabling point queries with 0.3 microseconds latency and up to 3,000 QPS per instance (measured using a single-thread)—a 100× improvement over traditional query paths.
.png)
ALLUXIO DAY IV 2021
June 24, 2021
Driven by strong interests from our open-source community, the core team of Alluxio started to re-design an efficient and transparent way for users to leverage data orchestration through the POSIX interface. We have introduced a new JNI-based FUSE implementation to support POSIX data access, as well as many improvements in relevant data operations like more efficient distributedLoad, optimizations on listing or calculating directories with a massive amount of files, which are common in model training.
ALLUXIO DAY IV 2021
June 24, 2021
Today’s analytics workloads demand real-time access to expansive amounts of data. This session demonstrates how Alluxio’s data orchestration platform, running on Intel Optane persistent memory, accelerates access to this data and uncovers its valuable business insights faster.
ALLUXIO DAY IV 2021
June 24, 2021
RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
ALLUXIO DAY IV 2021
June 24, 2021
Nowadays it is not straightforward to integrate Alluxio with popular query engines like Presto on existing Hive data. Solutions proposed by the community like Alluxio Catalog Service or Transparent URI brings unnecessary pressure on Alluxio masters when querying files should not be cached. This talk covers TikTok’s approach on adopting Alluxio for the cache layer without introducing additional services.
ALLUXIO DAY IV 2021
June 24, 2021
Alluxio has an excellent metrics system and supports various kinds of metrics, e.g. an embedded JSON sink and the prometheus sink. Users and developers can easily create a custom sink of Alluxio by implementing the Sink interface.
Also, Alluxio provides a metrics page in web UI to display some key information of Alluxio, such as bytes throughput and storage space. However, if you want a more flexible and universal monitoring, additional work is required.
ALLUXIO DAY III 2021
April 27, 2021
Data Lake Analytics(DLA) is a large scale serverless data federation service on Alibaba Cloud. One of its serverless analytics engine is based on Presto. The DLA Presto engine supports a variety of data sources and is widely used in different application scenarios in the cloud. In this session, we will talk about the system architecture of DLA Presto engine, as well as the challenges and solutions. In particular, we will introduce the use of alluxio local cache to solve performance issues on OSS data sources caused by access delay and OSS bandwidth limitation. We will discuss the principle of alluxio local cache and some improvements we have made.
ALLUXIO DAY III 2021
April 27, 2021
Increasingly powerful compute accelerators and large training dataset have made the storage layer a potential bottleneck in deep learning training/inference.
Offline inference job usually consumes and produces tens of tera-bytes data while running more than 10 hours.
For a large-scale job, it usually causes high IO pressure, increase job failure rate, and bring many challenges for system stability.
We adopt alluxio which acts as an intermediate storage tier between the compute tier and cloud storage to optimize IO throughput of deep learning inference job.
For the production workload, the performance improves 18% and we seldom see job failure because of storage issue.
ALLUXIO DAY III 2021
April 27, 2021
At Aspect Analytics we intend to use Dask, a distributed computation library for Python, to deal with MSI data stored as large tensors. In this talk we explore using Alluxio and Alluxio FUSE as a data consolidation and caching layer for some of our bioinformatics workflows.
ALLUXIO DAY III 2021
April 27, 2021
Alluxio’s capabilities as a Data Orchestration framework have encouraged users to onboard more of their data-driven applications to an Alluxio powered data access layer. Driven by strong interests from our open-source community, the core team of Alluxio started to re-design an efficient and transparent way for users to leverage data orchestration through the POSIX interface. This effort has a lot of progress with the collaboration with engineers from Microsoft, Alibaba and Tencent. Particularly, we have introduced a new JNI-based FUSE implementation to support POSIX data access, created a more efficient way to integrate Alluxio with FUSE service, as well as many improvements in relevant data operations like more efficient distributedLoad, optimizations on listing or calculating directories with a massive amount of files, which are common in model training. We will also share our engineering lessons and roadmap in future releases to support Machine Learning applications.
ALLUXIO DAY III 2021
April 27, 2021
RAPIDS is a set of open source libraries enabling GPU aware scheduling and memory representation for analytics and AI. Spark 3.0 uses RAPIDS for GPU computing to accelerate various jobs including SQL and DataFrame. With compute acceleration from massive parallelism on GPUs, there is a need for accelerating data access and this is what Alluxio enables for compute in any cloud. In this talk, you will learn how to use Alluxio and Spark with RAPIDS Accelerator on NVIDIA GPUs without any application changes.
ALLUXIO COMMUNITY OFFICE HOUR
We are thrilled to announce the release of Alluxio 2.5!
Alluxio 2.5 focuses on improving interface support to broaden the set of data driven applications which can benefit from data orchestration. The POSIX and S3 client interfaces have greatly improved in performance and functionality as a result of the widespread usage and demand from AI/ML workloads and system administration needs. Alluxio is rapidly evolving to meet the needs of enterprises that are deploying it as a key component of their AI/ML stacks.
At the same time, Alluxio continues to integrate with the latest cloud and cluster orchestration technologies. In 2.5, Alluxio has new connectors for Google Cloud Storage and Azure Data Lake Storage Gen 2 as well as better operability functionality for Kubernetes environments.
In this Office Hour, we will go over:
- JNI Based POSIX API
- S3 Northbound API
- ADLS Gen 2 Connector
- GCSv2 Connector
Many companies we talk to have on premises data lakes and use the cloud(s) to burst compute. Many are now establishing new object data lakes as well. As a result, running analytics such as Hive, Spark, Presto and machine learning are experiencing sluggish response times with data and compute in multiple locations. We also know there is an immense and growing data management burden to support these workflows.
In this talk, we will walk through what Alluxio’s Data Orchestration for the hybrid cloud era is and how it solves the performance and data management challenges we see.
In this tech talk, we’ll go over:
- What is Alluxio Data Orchestration?
- How does it work?
- Alluxio customer results