Products
Speeding up TensorFlow and PyTorch with Alluxio
September 9, 2021
ALLUXIO WEBINAR
Driven by strong interests from our open source community, the Alluxio core engineering team re-designed things to come up with a more efficient and transparent way for users to leverage data orchestration through the POSIX interface. This enables much better performance for ML workloads where data is accessed via the POSIX interface.
In this 20 minute community session, you’ll hear from Lu Qiu, one of Alluxio’s lead engineers on the POSIX implementation project.
In this session, you’ll learn:
- How Alluxio’s new JNI-based FUSE implementation supports more efficient POSIX data access
- How improvements to multiple data operations, including distributedLoad, optimizations on listing or calculating directories with a massive amounts of files, etc., improve performance. In model training
- How these latest enhancements improve performance on TensorFlow and PyTorch training workloads, even with GPU-based training and compute
ALLUXIO WEBINAR
Driven by strong interests from our open source community, the Alluxio core engineering team re-designed things to come up with a more efficient and transparent way for users to leverage data orchestration through the POSIX interface. This enables much better performance for ML workloads where data is accessed via the POSIX interface.
In this 20 minute community session, you’ll hear from Lu Qiu, one of Alluxio’s lead engineers on the POSIX implementation project.
In this session, you’ll learn:
- How Alluxio’s new JNI-based FUSE implementation supports more efficient POSIX data access
- How improvements to multiple data operations, including distributedLoad, optimizations on listing or calculating directories with a massive amounts of files, etc., improve performance. In model training
- How these latest enhancements improve performance on TensorFlow and PyTorch training workloads, even with GPU-based training and compute
Video:
Slack with speakers, experts, and community members.
Join the Alluxio Global Online Meetup Group.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Tech Talk: How Fireworks AI Achieves 1TB/s+ Throughput for Model Deployment Across Multi-Cloud GPU Infrastructure

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Engineering Manager at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments
January 15, 2026

