On-Demand Videos
Nilesh Agarwal, Co-founder & CTO at Inferless, shares insights on accelerating LLM inference in the cloud using Alluxio, tackling key bottlenecks like slow model weight loading from S3 and lengthy container startup time. Inferless uses Alluxio as a three-tier cache system that dramatically cuts model load time by 10x.

In this talk, Jingwen Ouyang, Senior Product Manager at Alluxio, will share how Alluxio make it easy to share and manage data from any storage to any compute engine in any environment with high performance and low cost for your model training, model inference, and model distribution workload.

Storing data as Parquet files on cloud object storage, such as AWS S3, has become prevalent not only for large-scale data lakes but also as lightweight feature stores for training and inference, or as document stores for Retrieval-Augmented Generation (RAG). However, querying petabyte-to-exabyte-scale data lakes directly from S3 remains notoriously slow, with latencies typically ranging from hundreds of milliseconds to several seconds.
In this webinar, David Zhu, Software Engineering Manager at Alluxio, will present the results of a joint collaboration between Alluxio and a leading SaaS and data infrastructure enterprise that explored leveraging Alluxio as a high-performance caching and acceleration layer atop AWS S3 for ultra-fast querying of Parquet files at PB scale.
David will share:
- How Alluxio delivers sub-millisecond Time-to-First-Byte (TTFB) for Parquet queries, comparable to S3 Express One Zone, without requiring specialized hardware, data format changes, or data migration from your existing data lake.
- The architecture that enables Alluxio’s throughput to scale linearly with cluster size, achieving one million queries per second on a modest 50-node deployment, surpassing S3 Express single-account throughput by 50x without latency degradation.
- Specifics on how Alluxio offloads partial Parquet read operations and reduces overhead, enabling direct, ultra-low-latency point queries in hundreds of microseconds and achieving a 1,000x performance gain over traditional S3 querying methods.
Speaker: David Zhu
David Zhu is a Software Engineer Manager at Alluxio. At Alluxio, David focuses on metadata management and end-to-end performance benchmarking and optimizations. Prior to that, David completed his Ph.D. from UC Berkeley, with a focus on distributed data management systems and operating systems for the data center. David also holds a Bachelor of Software Engineering from the University of Waterloo.
.png)
Join us with David Loshin, President of Knowledge Integrity, and Sridhar Venkatesh, SVP of Product at Alluxio, to learn more about the infrastructure hurdles associated with AI/ML model training and deployment and how to overcome them. Topics include:
- The challenges of AI and model training
- GPU utilization in machine learning and the need for specialized hardware
- Managing data access and maintaining a source of truth in data lakes
- Best practices for optimizing ML training
When training models on ultra-large datasets, one of the biggest challenges is low GPU utilization. These powerful processors are often underutilized due to inefficient I/O and data access. This mismatch between computation and storage leads to wasted GPU resources, low performance, and high cloud storage costs. The rise of generative AI and GPU scarcity is only making this problem worse.
In this webinar, Tarik and Beinan discuss strategies for transforming idle GPUs into optimal powerhouses. They will focus on cost-effective management of ultra-large datasets for AI and analytics.
What you will learn:
- The challenges of I/O stalls leading to low GPU utilization for model training
- High-performance, high-throughput data access (I/O) strategies
- The benefits of using an on-demand data access layer over your storage
- How Uber addresses managing ultra-large datasets using high-density storage and caching
As the AI landscape rapidly evolves, the advancements in generative AI technologies, such as ChatGPT, are driving a need for robust data infrastructures tailored for large language model (LLM) training and inference in the cloud. To effectively leverage the breakthroughs in LLM, organizations must ensure low latency, high concurrency, and scalability in production environments.
In this Alluxio-hosted webinar, Shouwei presented on the design and implementation of a distributed caching system that addresses the I/O challenges of LLM training and inference. He explored the unique requirements of data access patterns and offer practical best practices for optimizing the data pipeline through distributed caching in the cloud. The session featured insights from real-world examples, such as Microsoft, Tencent, and Zhihu, as well as from the open-source community. Watch this recording to get a deeper understanding of how to harness scalable, efficient, and robust data infrastructures for LLM training and inference.
Shawn Sun, Alluxio’s software engineer, shares how to get started with Alluxio on Kubernetes in April’s Product School Webinar.
To simplify the DevOps of the stack of Alluxio with a query engine, Alluxio has provided two ways to deploy on Kubernetes, helm and operator. They significantly simplify the deployment, configuration, and life cycle management of resources on Kubernetes.
Through this webinar, you will learn step-by-step how to deploy and run Alluxio on Kubernetes to accelerate analytics workloads.
In March’s Product School session, Beinan, an Alluxio tech lead, Presto committer, and Trino contributor, shares expert tips for tuning Trino performance. In addition, he demonstrates how to integrate Trino with Alluxio as a caching layer using connectors for Hive, Iceberg, Hudi, or Delta Lake.
In February’s product school, Greg Palmer, Lead Solution Engineer at Alluxio, will present a live demo featuring Transparent URI, a key feature in Alluxio Enterprise Edition which provides ease of integration of Alluxio with your existing data stack without any changes to the location metadata of the Hive Metastore. Join us to learn the configurations and other advanced settings for employing Transparent URI to simplify DevOps of Alluxio implementation, allowing users to access their existing storage systems without changing URIs at application level.
In November’s Product School, Adit Madan, Director of Product Management at Alluxio, will highlights new features, enhanced manageability, improved security and performance in Alluxio 2.9 release.
Big Data Bellevue Meetup
May 19, 2022
Today, data engineering in modern enterprises has become increasingly more complex and resource-consuming, particularly because (1) the rich amount of organizational data is often distributed across data centers, cloud regions, or even cloud providers, and (2) the complexity of the big data stack has been quickly increasing over the past few years with an explosion in big-data analytics and machine-learning engines (like MapReduce, Hive, Spark, Presto, Tensorflow, PyTorch to name a few).
To address these challenges, it is critical to provide a single and logical namespace to federate different storage services, on-prem or cloud-native, to abstract away the data heterogeneity, while providing data locality to improve the computation performance. [Bin Fan] will share his observation and lessons learned in designing, architecting, and implementing such a system – Alluxio open-source project — since 2015.
Alluxio originated from UC Berkeley AMPLab (used to be called Tachyon) and was initially proposed as a daemon service to enable Spark to share RDDs across jobs for performance and fault tolerance. Today, it has become a general-purpose, high-performance, and highly available distributed file system to provide generic data service to abstract away complexity in data and I/O. Many companies and organizations today like Uber, Meta, Tencent, Tiktok, Shopee are using Alluxio in production, as a building block in their data platform to create a data abstraction and access layer. We will talk about the journey of this open source project, especially in its design challenges in tiered metadata storage (based on RocksDB), embedded state-replicate machine (based on RAFT) for HA, and evolution in RPC framework (based on gRPC) and etc.
Meetup Group
Big Data Bellevue: https://www.meetup.com/big-data-bellevue-bdb/
Big Data Bellevue & Cloudy With a Chance of Data Meetup
October 20, 2022
Distributed systems are made up of many components such as authentication, a persistence layer, stateless services, load balancers, and stateful coordination services. These coordination services are central to the operation of the system, performing tasks such as maintaining system configuration state, ensuring service availability, name resolution, and storing other system metadata. Given their central role in the system it is essential that these systems remain available, fault tolerant and consistent. By providing a highly available file system-like abstraction as well as powerful recipes such as leader election, Apache Zookeeper is often used to implement these services. This talk will go over a generic example of stateful coordination service moving from Zookeeper to Raft.
Meetup Groups
Big Data Bellevue: https://www.meetup.com/big-data-bellevue-bdb/
Cloudy With a Chance of Data: https://www.meetup.com/meetup-datascience/
Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access.
In October’s Product School, Alluxio’s Lead Solutions Engineer Greg Palmer will present and demo how Alluxio enables you to embrace the cloud migration strategy or multi-cloud architecture for large-scale analytics and AI workloads. Alluxio also helps scale out your platform adoption for analytics and AI across multiple tenants and applications teams.
ALLUXIO DAY x APAC Modern Data Stack 2022
In this presentation, Yingjun Wu, Founder @ RisingWave Labs will talk about the birth, the growth, and the prosperity of modern data stack. I will show you why modern data stack is more than a buzzword, and how it will possibly evolve in the next couple of years.
ALLUXIO DAY x APAC Modern Data Stack 2022
September 22, 2022
Apache Hudi’s open-source community is very active and healthy. In this talk, an overview of community-driven major features will be presented, followed by a deep-dive into two of those features, metastore and table management service, driven by Bytedance to illustrate Hudi’s platform vision.