As enterprises race to roll out artificial intelligence, often overlooked are the infrastructure needs to support scalable ML model development and deployment. Efforts to effectively access and utilize GPUs often lead to extensive data engineering managing data copies or specialized storage, leading to out-of-control cloud and infrastructure costs.
To address the challenges, enterprises need a new data access layer to connect compute engines to data stores wherever they reside in distributed environments.
Join this webinar with Kevin Petrie, Eckerson Group VP of Research, and Sridhar Venkatesh, Alluxio SVP of Product, to explore tools, techniques, and best practices to remove data access bottlenecks and accelerate AI/ML model training. You will learn:
- Modern requirements for AI/ML model training and data engineering
- The challenges of GPU utilization in machine learning and the need for specialized hardware
- How a new data access layer connects compute to data stores across environments
- Best practices for optimizing ML training and guiding principles for success
As enterprises race to roll out artificial intelligence, often overlooked are the infrastructure needs to support scalable ML model development and deployment. Efforts to effectively access and utilize GPUs often lead to extensive data engineering managing data copies or specialized storage, leading to out-of-control cloud and infrastructure costs.
To address the challenges, enterprises need a new data access layer to connect compute engines to data stores wherever they reside in distributed environments.
Join this webinar with Kevin Petrie, Eckerson Group VP of Research, and Sridhar Venkatesh, Alluxio SVP of Product, to explore tools, techniques, and best practices to remove data access bottlenecks and accelerate AI/ML model training. You will learn:
- Modern requirements for AI/ML model training and data engineering
- The challenges of GPU utilization in machine learning and the need for specialized hardware
- How a new data access layer connects compute to data stores across environments
- Best practices for optimizing ML training and guiding principles for success
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

