As enterprises race to roll out artificial intelligence, often overlooked are the infrastructure needs to support scalable ML model development and deployment. Efforts to effectively access and utilize GPUs often lead to extensive data engineering managing data copies or specialized storage, leading to out-of-control cloud and infrastructure costs.
To address the challenges, enterprises need a new data access layer to connect compute engines to data stores wherever they reside in distributed environments.
Join this webinar with Kevin Petrie, Eckerson Group VP of Research, and Sridhar Venkatesh, Alluxio SVP of Product, to explore tools, techniques, and best practices to remove data access bottlenecks and accelerate AI/ML model training. You will learn:
- Modern requirements for AI/ML model training and data engineering
- The challenges of GPU utilization in machine learning and the need for specialized hardware
- How a new data access layer connects compute to data stores across environments
- Best practices for optimizing ML training and guiding principles for success
As enterprises race to roll out artificial intelligence, often overlooked are the infrastructure needs to support scalable ML model development and deployment. Efforts to effectively access and utilize GPUs often lead to extensive data engineering managing data copies or specialized storage, leading to out-of-control cloud and infrastructure costs.
To address the challenges, enterprises need a new data access layer to connect compute engines to data stores wherever they reside in distributed environments.
Join this webinar with Kevin Petrie, Eckerson Group VP of Research, and Sridhar Venkatesh, Alluxio SVP of Product, to explore tools, techniques, and best practices to remove data access bottlenecks and accelerate AI/ML model training. You will learn:
- Modern requirements for AI/ML model training and data engineering
- The challenges of GPU utilization in machine learning and the need for specialized hardware
- How a new data access layer connects compute to data stores across environments
- Best practices for optimizing ML training and guiding principles for success
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
In this talk, Ojus Save walks you through a demo of how to build AI applications on Zoom. This demo shows you an AI agent that receives transcript data from RTMS and then decides if it has to create action items based on the transcripts that are received.
In this talk, Sandeep Joshi, , Senior Manager at NVIDIA, shares how to accelerate the data access between GPU and storage for AI. Sandeep will dive into two options: CPU- initiated GPUDirect Storage and GPU-initiated SCADA.
Bin Fan, VP of Technology at Alluxio, introduces how Alluxio, a software layer transparently sits between application and S3 (or other object stores), provides sub-ms time to first byte (TTFB) solution, with up to 45x lower latency.