ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
Video:
Presentation slides:
ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.