Products
On-Demand Videos
video
AI/ML Infra Meetup | AI at scale Architecting Scalable, Deployable and Resilient Infrastructure

Pratik Mishra delivered insights on architecting scalable, deployable, and resilient AI infrastructure at scale. His discussion on fault tolerance, checkpoint optimization, and the democratization of AI compute through AMD's open ecosystem resonated strongly with the challenges teams face in production ML deployments.
video
AI/ML Infra Meetup | Alluxio + S3 A Tiered Architecture for Latency-Critical, Semantically-Rich Workloads

In this talk, Bin Fan, VP of Technology at Alluxio, presents on building tiered architectures that bring sub-millisecond latency to S3-based workloads. The comparison showing Alluxio's 45x performance improvement over S3 Standard and 5x over S3 Express One Zone demonstrated the critical role the performance & caching layer plays in modern AI infrastructure.
video
AI/ML Infra Meetup | Achieving Double-Digit Millisecond Offline Feature Stores with Alluxio

In this talk, Greg Lindstrom shared how Blackout Power Trading achieved double-digit millisecond offline feature store performance using Alluxio, a game-changer for real-time power trading where every millisecond counts. The 60x latency reduction for inference queries was particularly impressive.
.png)
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
video
Securely Enhancing Data Access in Hybrid Cloud with Alluxio
Describe benefits and methods Alluxio enables secure data access in the Comcast’s dx hybrid data cloud.
- Review the data access challenges and tradeoffs in hybrid cloud
- Review our hybrid architecture and the important role Alluxio plays
- Provide performance metrics to highlight the benefits
Large Scale Analytics Acceleration
Hybrid Multi-Cloud
Data Platform Modernization
video
Bursting on-premise analytic workloads to Amazon EMR using Alluxio
Data infrastructure on-premises is increasingly complex and cloud adoption is attractive for business agility. Operating a hybrid environment is an approach to start benefiting from cloud elasticity quickly without abandoning the infrastructure on-premises. In this session I will discuss the benefits of using Alluxio’s Data Orchestration Platform to dynamically burst Apache Spark and Presto workloads to Amazon EMR for best performance and agility.
Large Scale Analytics Acceleration
Hybrid Multi-Cloud
video
Hybrid Data Lake on Google Cloud with Alluxio and Dataproc
Dataproc is Google’s managed Hadoop and Spark platform. In this talk, we will showcase how to swiftly build a hybrid cloud data platform with Alluxio and Presto and migrate data seamlessly.
Large Scale Analytics Acceleration
Hybrid Multi-Cloud
Data Platform Modernization
video
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio
Today, many people run deep learning applications with training data from separate storage such as object storage or remote data centers. This presentation will demo the Intel Analytics Zoo + Alluxio stack, an architecture that enables high performance while keeping cost and resource efficiency balanced without network being I/O bottlenecked.
Intel Analytics Zoo is a unified data analytics and AI platform open-sourced by Intel. It seamlessly unites TensorFlow, Keras, PyTorch, Spark, Flink, and Ray programs into an integrated pipeline, which can transparently scale from a laptop to large clusters to process production big data. Alluxio, as an open-source data orchestration layer, accelerates data loading and processing in Analytics Zoo deep learning applications.
This talk, we will go over:
- What is Analytics Zoo and how it works
- How to run Analytics Zoo with Alluxio in deep learning applications
- Initial performance benchmark results using the Analytics Zoo + Alluxio stack
Hybrid Multi-Cloud
Data Platform Modernization
Large Scale Analytics Acceleration
Model Training Acceleration
video
Fluid: When Alluxio Meets Kubernetes
Nowadays, cloud native environments have attracted lots of data-intensive applications deployed and ran on them, due to the efficient-to-deploy and easy-to-maintain advantages provided by cloud native platforms and frameworks such as Docker, Kubernetes. However, cloud native frameworks does not provide the data abstraction support to the applications natively. Therefore, we build Fluid project, which co-orchestrate data and containers together. We use Alluxio as the cache runtime inside Fluid to warm up hot data. In this report, we will introduce the design and effects of the Fluid project.
Large Scale Analytics Acceleration
video
Speeding Up Atlas Deep Learning Platform with Alluxio + Fluid
Unisound focuses on Artificial Intelligence services for the Internet of Things. It is an artificial intelligence company with completely independent intellectual property rights and the world’s top intelligent voice technology. Atlas is the Deep Learning platform within Unisound AI Labs, which provides deep learning pipeline support for hundreds of algorithm scientists. This talk shares three real business training scenarios that leverage Alluxio’s distributed caching capabilities and Fluid’s cloud native capabilities, and achieve significant training acceleration and solve platform IO bottlenecks. We hope that the practice of Alluxio & Fluid on Atlas platform will bring benefits to more companies and engineers.
Model Training Acceleration
Data Platform Modernization
video
The hidden engineering behind machine learning products at Helixa
Data and Machine Learning (ML) technologies are now widespread and adopted by literally all industries. Although recent advancements in the field have reached an unthinkable level of maturity, many organizations still struggle with turning these advances into tangible profits. Unfortunately, many ML projects get stuck in a proof-of-concept stage without ever reaching customers and generating revenue. In order to effectively adopt ML technologies, enterprises need to build the right business cases as well as to be ready to face the inevitable technical challenges. In this talk, we will share some common pitfalls, lessons learned, and engineering practices, faced while building customer-facing enterprise ML products. In particular, we will focus on the engineering that delivers real-time audience insights everyday to thousands of marketers via the Helixa’s market research platform.
During the talk you will learn:
- An overview of the Helixa ML end-to-end system
- Useful engineering practices and recommended tools (PyData stack, AWS, Alluxio, scikit-learn, tensorflow, mlflow, jupyter, github, docker, Spark, to name a few..)
- The R&D workflow and how it integrates with the production system
- Infrastructure considerations for scalable and cheap deployment, monitoring, and alerting
- How to leverage modern cloud serverless architectures for data and machine learning applications
Model Training Acceleration
video
Achieving Massive Concurrency and Sub-second query latency on Cloud warehouses and data lakes with kyligence cloud
Enterprises everywhere are racing to build the optimal analytics stack for creating repeatable success with predictive analytics, machine learning, and data applications. Cloud data platforms like data warehouses and data lakes are foundational elements of these software stacks and their associated data pipelines. But existing SQL query methods against these data platforms have repeatedly demonstrated disappointing performance and scaling due to poor concurrency.
In this presentation, we will discuss the use of the intelligent precomputation capabilities of Kyligence Cloud as a means of delivering on the promise of pervasive analytics at scale with massive concurrency and sub-second query latencies on large datasets in the cloud.
Kyligence, with our partner Alluxio, sits between the data platform and the processing layer. Kyligence Cloud delivers precomputed datasets for OLAP queries, BI dashboards, and machine learning applications.
No items found.
video
Accelerating Data Computation on Ceph Objects using Alluxio
In most of the distributed storage systems, the data nodes are decoupled from compute nodes. This is motivated by an improved cost efficiency, storage utilization and a mutually independent scalability of computation and storage. While this consideration is indisputable, several situations exist where moving computation close to the data brings important benefits. Whenever the stored data is to be processed for analytics purposes, all the data needs to be repeatedly moved from the storage to the compute cluster, which leads to reduced performance.
In this talk, we will present how using Alluxio computation and storage ecosystems can better interact benefiting of the “bringing the data close to the code” approach. Moving away from the complete disaggregation of computation and storage, data locality can enhance the computation performance. During this talk, we will present our observations and testing results that will show important enhancements in accelerating Spark Data Analytics on Ceph Objects Storage using Alluxio.
Large Scale Analytics Acceleration
video
Unified Data Access with Gimel
At PayPal & any other data driven enterprise – data users & applications work with a variety of data sources (RDBMS, NoSQL, Messaging, Documents, Big Data, Time Series Databases), compute engines (Spark, Flink, Beam, Hive), languages (Scala, Python, SQL) and execution models (stream, batch, interactive) to process petabytes of data. Due to this complex matrix of technologies and thousands of datasets, engineers spend considerable time learning about different data sources, formats, programming models, APIs, optimizations, etc. which impacts time-to-market (TTM).
To solve this problem and to make product development more effective, PayPal Data Platforms developed “Gimel”, an open source, unified analytics data platform which provides access to any storage through a single unified data API and SQL, which are powered by a centralized data catalog.
Large Scale Analytics Acceleration
video
How to Build a new under filesystem in Alluxio: Apache Ozone as an example
In this talk, Baolong Mao from Tencent will share his experience in developing Apache Ozone under file system, showing how to create a new Under File System in a few steps with minimal lines of code.
No items found.