Enterprises everywhere are racing to build the optimal analytics stack for creating repeatable success with predictive analytics, machine learning, and data applications. Cloud data platforms like data warehouses and data lakes are foundational elements of these software stacks and their associated data pipelines. But existing SQL query methods against these data platforms have repeatedly demonstrated disappointing performance and scaling due to poor concurrency.
In this presentation, we will discuss the use of the intelligent precomputation capabilities of Kyligence Cloud as a means of delivering on the promise of pervasive analytics at scale with massive concurrency and sub-second query latencies on large datasets in the cloud.
Kyligence, with our partner Alluxio, sits between the data platform and the processing layer. Kyligence Cloud delivers precomputed datasets for OLAP queries, BI dashboards, and machine learning applications.
Enterprises everywhere are racing to build the optimal analytics stack for creating repeatable success with predictive analytics, machine learning, and data applications. Cloud data platforms like data warehouses and data lakes are foundational elements of these software stacks and their associated data pipelines. But existing SQL query methods against these data platforms have repeatedly demonstrated disappointing performance and scaling due to poor concurrency.
In this presentation, we will discuss the use of the intelligent precomputation capabilities of Kyligence Cloud as a means of delivering on the promise of pervasive analytics at scale with massive concurrency and sub-second query latencies on large datasets in the cloud.
Kyligence, with our partner Alluxio, sits between the data platform and the processing layer. Kyligence Cloud delivers precomputed datasets for OLAP queries, BI dashboards, and machine learning applications.
Video:
Presentation Slides:
Enterprises everywhere are racing to build the optimal analytics stack for creating repeatable success with predictive analytics, machine learning, and data applications. Cloud data platforms like data warehouses and data lakes are foundational elements of these software stacks and their associated data pipelines. But existing SQL query methods against these data platforms have repeatedly demonstrated disappointing performance and scaling due to poor concurrency.
In this presentation, we will discuss the use of the intelligent precomputation capabilities of Kyligence Cloud as a means of delivering on the promise of pervasive analytics at scale with massive concurrency and sub-second query latencies on large datasets in the cloud.
Kyligence, with our partner Alluxio, sits between the data platform and the processing layer. Kyligence Cloud delivers precomputed datasets for OLAP queries, BI dashboards, and machine learning applications.
Video:
Presentation Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.