Today, many people run deep learning applications with training data from separate storage such as object storage or remote data centers. This presentation will demo the Intel Analytics Zoo + Alluxio stack, an architecture that enables high performance while keeping cost and resource efficiency balanced without network being I/O bottlenecked.
Intel Analytics Zoo is a unified data analytics and AI platform open-sourced by Intel. It seamlessly unites TensorFlow, Keras, PyTorch, Spark, Flink, and Ray programs into an integrated pipeline, which can transparently scale from a laptop to large clusters to process production big data. Alluxio, as an open-source data orchestration layer, accelerates data loading and processing in Analytics Zoo deep learning applications.
This talk, we will go over:
- What is Analytics Zoo and how it works
- How to run Analytics Zoo with Alluxio in deep learning applications
- Initial performance benchmark results using the Analytics Zoo + Alluxio stack
Today, many people run deep learning applications with training data from separate storage such as object storage or remote data centers. This presentation will demo the Intel Analytics Zoo + Alluxio stack, an architecture that enables high performance while keeping cost and resource efficiency balanced without network being I/O bottlenecked.
Intel Analytics Zoo is a unified data analytics and AI platform open-sourced by Intel. It seamlessly unites TensorFlow, Keras, PyTorch, Spark, Flink, and Ray programs into an integrated pipeline, which can transparently scale from a laptop to large clusters to process production big data. Alluxio, as an open-source data orchestration layer, accelerates data loading and processing in Analytics Zoo deep learning applications.
This talk, we will go over:
- What is Analytics Zoo and how it works
- How to run Analytics Zoo with Alluxio in deep learning applications
- Initial performance benchmark results using the Analytics Zoo + Alluxio stack
Video:
Presentation Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Nilesh Agarwal, Co-founder & CTO at Inferless, shares insights on accelerating LLM inference in the cloud using Alluxio, tackling key bottlenecks like slow model weight loading from S3 and lengthy container startup time. Inferless uses Alluxio as a three-tier cache system that dramatically cuts model load time by 10x.

In this talk, Jingwen Ouyang, Senior Product Manager at Alluxio, will share how Alluxio make it easy to share and manage data from any storage to any compute engine in any environment with high performance and low cost for your model training, model inference, and model distribution workload.

Storing data as Parquet files on cloud object storage, such as AWS S3, has become prevalent not only for large-scale data lakes but also as lightweight feature stores for training and inference, or as document stores for Retrieval-Augmented Generation (RAG). However, querying petabyte-to-exabyte-scale data lakes directly from S3 remains notoriously slow, with latencies typically ranging from hundreds of milliseconds to several seconds.
In this webinar, David Zhu, Software Engineering Manager at Alluxio, will present the results of a joint collaboration between Alluxio and a leading SaaS and data infrastructure enterprise that explored leveraging Alluxio as a high-performance caching and acceleration layer atop AWS S3 for ultra-fast querying of Parquet files at PB scale.
David will share:
- How Alluxio delivers sub-millisecond Time-to-First-Byte (TTFB) for Parquet queries, comparable to S3 Express One Zone, without requiring specialized hardware, data format changes, or data migration from your existing data lake.
- The architecture that enables Alluxio’s throughput to scale linearly with cluster size, achieving one million queries per second on a modest 50-node deployment, surpassing S3 Express single-account throughput by 50x without latency degradation.
- Specifics on how Alluxio offloads partial Parquet read operations and reduces overhead, enabling direct, ultra-low-latency point queries in hundreds of microseconds and achieving a 1,000x performance gain over traditional S3 querying methods.
Speaker: David Zhu
David Zhu is a Software Engineer Manager at Alluxio. At Alluxio, David focuses on metadata management and end-to-end performance benchmarking and optimizations. Prior to that, David completed his Ph.D. from UC Berkeley, with a focus on distributed data management systems and operating systems for the data center. David also holds a Bachelor of Software Engineering from the University of Waterloo.