Using “zero-copy” hybrid bursting with Spark to solve capacity problems
Want to leverage your existing investments in Hadoop with your data on-premise and still benefit from the elasticity of the cloud?
Like other Hadoop users, you most likely experience very large and busy Hadoop clusters, particularly when it comes to compute capacity. Bursting HDFS data to the cloud can bring challenges – network latency impacts performance, copying data via DistCP means maintaining duplicate data, and you may have to make application changes to accomodate the use of S3.
“Zero-copy” hybrid bursting with Alluxio keeps your data on-prem and syncs data to compute in the cloud so you can expand compute capacity, particularly for ephemeral Spark jobs.
In this tech talk, we’ll discuss:
- Approaches to burst data to the cloud
- How Alluxio can enable “zero-copy” bursting of Spark workloads to cloud data services like EMR and Dataproc
- How DBS Bank uses Alluxio to solve for limited on-prem compute capacity by zero-copy bursting Spark workloads to AWS EMR
Using “zero-copy” hybrid bursting with Spark to solve capacity problems
Want to leverage your existing investments in Hadoop with your data on-premise and still benefit from the elasticity of the cloud?
Like other Hadoop users, you most likely experience very large and busy Hadoop clusters, particularly when it comes to compute capacity. Bursting HDFS data to the cloud can bring challenges – network latency impacts performance, copying data via DistCP means maintaining duplicate data, and you may have to make application changes to accomodate the use of S3.
“Zero-copy” hybrid bursting with Alluxio keeps your data on-prem and syncs data to compute in the cloud so you can expand compute capacity, particularly for ephemeral Spark jobs.
In this tech talk, we’ll discuss:
- Approaches to burst data to the cloud
- How Alluxio can enable “zero-copy” bursting of Spark workloads to cloud data services like EMR and Dataproc
- How DBS Bank uses Alluxio to solve for limited on-prem compute capacity by zero-copy bursting Spark workloads to AWS EMR
Using “zero-copy” hybrid bursting with Spark to solve capacity problems
Want to leverage your existing investments in Hadoop with your data on-premise and still benefit from the elasticity of the cloud?
Like other Hadoop users, you most likely experience very large and busy Hadoop clusters, particularly when it comes to compute capacity. Bursting HDFS data to the cloud can bring challenges – network latency impacts performance, copying data via DistCP means maintaining duplicate data, and you may have to make application changes to accomodate the use of S3.
“Zero-copy” hybrid bursting with Alluxio keeps your data on-prem and syncs data to compute in the cloud so you can expand compute capacity, particularly for ephemeral Spark jobs.
In this tech talk, we’ll discuss:
- Approaches to burst data to the cloud
- How Alluxio can enable “zero-copy” bursting of Spark workloads to cloud data services like EMR and Dataproc
- How DBS Bank uses Alluxio to solve for limited on-prem compute capacity by zero-copy bursting Spark workloads to AWS EMR
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.