ALLUXIO COMMUNITY OFFICE HOUR
Alluxio (alluxio.io) is an open-source data orchestration system that provides a single namespace federating multiple external distributed storage systems. It is critical for Alluxio to be able to store and serve the metadata of all files and directories from all mounted external storage both at scale and at speed.
This talk shares our design, implementation, and optimization of Alluxio metadata service (master node) to address the scalability challenges. Particularly, we will focus on how to apply and combine techniques including tiered metadata storage (based on off-heap KV store RocksDB), fine-grained file system inode tree locking scheme, embedded state-replicate machine (based on RAFT), exploration and performance tuning in the correct RPC frameworks (thrift vs gRPC) and etc. As a result of the combined above techniques, Alluxio 2.0 is able to store at least 1 billion files with a significantly reduced memory requirement, serving 3000 workers and 30000 clients concurrently.
In this Office Hour, we will go over how to:
- Metadata storage challenges
- How to combine different open source technologies as building blocks
- The design, implementation, and optimization of Alluxio metadata service
ALLUXIO COMMUNITY OFFICE HOUR
Alluxio (alluxio.io) is an open-source data orchestration system that provides a single namespace federating multiple external distributed storage systems. It is critical for Alluxio to be able to store and serve the metadata of all files and directories from all mounted external storage both at scale and at speed.
This talk shares our design, implementation, and optimization of Alluxio metadata service (master node) to address the scalability challenges. Particularly, we will focus on how to apply and combine techniques including tiered metadata storage (based on off-heap KV store RocksDB), fine-grained file system inode tree locking scheme, embedded state-replicate machine (based on RAFT), exploration and performance tuning in the correct RPC frameworks (thrift vs gRPC) and etc. As a result of the combined above techniques, Alluxio 2.0 is able to store at least 1 billion files with a significantly reduced memory requirement, serving 3000 workers and 30000 clients concurrently.
In this Office Hour, we will go over how to:
- Metadata storage challenges
- How to combine different open source technologies as building blocks
- The design, implementation, and optimization of Alluxio metadata service
Video:
Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

