Blog

Coupang, a Fortune 200 technology company, manages a multi-cluster GPU architecture for their AI/ML model training. This architecture introduced significant challenges, including:
- Time-consuming data preparation and data copy/movement
- Difficulty utilizing GPU resources efficiently
- High and growing storage costs
- Excessive operational overhead maintaining storage for localized data silos
To resolve these challenges, Coupang’s AI platform team implemented a distributed caching system that automatically retrieves training data from their central data lake, improves data loading performance, unifies access paths for model developers, automates data lifecycle management, and extends easily across Kubernetes environments. The new distributed caching architecture has improved model training speed, reduced storage costs, increased GPU utilization across clusters, lowered operational overhead, enabled training workload portability, and delivered 40% better I/O performance compared to parallel file systems.

Suresh Kumar Veerapathiran and Anudeep Kumar, engineering leaders at Uptycs, recently shared their experience of evolving their data platform and analytics architecture to power analytics through a generative AI interface. In their post on Medium titled Cache Me If You Can: Building a Lightning-Fast Analytics Cache at Terabyte Scale, Veerapathiran and Kumar provide detailed insights into the challenges they faced (and how they solved them) scaling their analytics solution that collects and reports on terabytes of telemetry data per day as part of Uptycs Cloud-Native Application Protection Platform (CNAPP) solutions.
.png)
.jpeg)
This tutorial describes steps to set up an EMR cluster with Alluxio as a distributed caching layer for Hive, and run sample queries to access data in S3 through Alluxio.
.jpeg)
This article describes my lessons from a previous project which moved a data pipeline originally running on a Hadoop cluster managed by my team, to AWS using EMR and S3. The goal was to leverage the elasticity of EMR to offload the operational work, as well as make S3 a data lake where different teams can easily share data across projects.
.jpeg)
This article describes how JD built this interactive OLAP platform combining two open-source technologies: Presto and Alluxio.
.jpeg)
In this article, you will learn how to incorporate Alluxio to implement a unified distributed file system service as well as how to add extensions on top of Alluxio including customized authentication schemes and UDF (user-defined functions) on Alluxio files.
.jpeg)
Alluxio is a new layer on top of under storage systems that can not only improve raw I/O performance but also enables applications flexible options to read, write and manage files. This article focuses on describing different ways to write files to Alluxio, realizing the tradeoffs in performance, consistency, and also the level of fault tolerance compared to HDFS.

Monitoring metrics is highly important to operate distributed systems in production. Alluxio collects metrics using the Codahale Metrics Library on I/O throughput, RPC throughput, and resource usage. Alluxio metrics are shown in its webUI, but are also available through a REST endpoint or exportable to several third-party sinks in a time-series manner (see docs).
.jpeg)
Alluxio is an open-source data orchestration system widely used to speed up data-intensive workloads in the cloud. Alluxio v2.0 introduced Replicated Async Write to allow users to complete writes to Alluxio file system and return quickly with high application performance, while still providing users with peace of mind that data will be persisted to the chosen under storage like S3 in the background.

Alluxio is a proud sponsor and exhibitor at the AWS Summit in New York. If you weren't able to attend, here are the highlights
.jpeg)
Today, real-time computation platform is becoming increasingly important in many organizations. In this article, we will describe how ctrip.com applies Alluxio to accelerate the Spark SQL real-time jobs and maintain the jobs’ consistency during the downtime of our internal data lake (HDFS). In addition, we leverage Alluxio as a caching layer to dramatically reduce the workload pressure on our HDFS NameNode.
.jpeg)
Here in New York, at the AWS Summit, we are super excited to announce that Alluxio 2.0 is here, our most major release since the Alluxio launch. A couple months ago, we released 2.0 Preview - which included some of the capabilities, but 2.0 now includes even more, to continue building on to our data orchestration approach for the cloud.