Blog

Coupang, a Fortune 200 technology company, manages a multi-cluster GPU architecture for their AI/ML model training. This architecture introduced significant challenges, including:
- Time-consuming data preparation and data copy/movement
- Difficulty utilizing GPU resources efficiently
- High and growing storage costs
- Excessive operational overhead maintaining storage for localized data silos
To resolve these challenges, Coupang’s AI platform team implemented a distributed caching system that automatically retrieves training data from their central data lake, improves data loading performance, unifies access paths for model developers, automates data lifecycle management, and extends easily across Kubernetes environments. The new distributed caching architecture has improved model training speed, reduced storage costs, increased GPU utilization across clusters, lowered operational overhead, enabled training workload portability, and delivered 40% better I/O performance compared to parallel file systems.

Suresh Kumar Veerapathiran and Anudeep Kumar, engineering leaders at Uptycs, recently shared their experience of evolving their data platform and analytics architecture to power analytics through a generative AI interface. In their post on Medium titled Cache Me If You Can: Building a Lightning-Fast Analytics Cache at Terabyte Scale, Veerapathiran and Kumar provide detailed insights into the challenges they faced (and how they solved them) scaling their analytics solution that collects and reports on terabytes of telemetry data per day as part of Uptycs Cloud-Native Application Protection Platform (CNAPP) solutions.
.png)
.jpeg)
This is part 2 of the blog series talking about the design and implementation of the Cross Cluster Synchronization mechanism in Alluxio. In the previous blog, we discussed the scenario, background and how metadata sync is done with a single Alluxio cluster. This blog will describe how metadata sync is built upon to provide metadata consistency in a multi-cluster scenario.

This is a blog series talking about the design and implementation of the Cross Cluster Synchronization mechanism in Alluxio. This mechanism ensures that the metadata is consistent when running multiple Alluxio clusters. Part 1 of this blog series discusses the scenario and background.
.jpeg)
.jpeg)
Modern analytics projects rely on a hodgepodge of compute clusters, data stores, and pipelines, flung across countries and continents. Enterprises struggle to meet performance SLAs without replicating lots of data or moving and re-coding applications.
.jpeg)
.jpeg)
The problem with data modernization initiatives is that they result in distributed datasets that impede analytics projects. As enterprises start their cloud migration journey, adopt new types of applications, data stores, and infrastructure, they still leave residual data in the original location. This results in far-flung silos that can be slow, complex and expensive to analyze. As business demands for analytics rise—along with cloud costs—enterprises need to rationalize how they access and process distributed data. They cannot afford to replicate entire datasets or rewrite software every time they study data in more than one location.