On-Demand Videos
Nilesh Agarwal, Co-founder & CTO at Inferless, shares insights on accelerating LLM inference in the cloud using Alluxio, tackling key bottlenecks like slow model weight loading from S3 and lengthy container startup time. Inferless uses Alluxio as a three-tier cache system that dramatically cuts model load time by 10x.

In this talk, Jingwen Ouyang, Senior Product Manager at Alluxio, will share how Alluxio make it easy to share and manage data from any storage to any compute engine in any environment with high performance and low cost for your model training, model inference, and model distribution workload.

Storing data as Parquet files on cloud object storage, such as AWS S3, has become prevalent not only for large-scale data lakes but also as lightweight feature stores for training and inference, or as document stores for Retrieval-Augmented Generation (RAG). However, querying petabyte-to-exabyte-scale data lakes directly from S3 remains notoriously slow, with latencies typically ranging from hundreds of milliseconds to several seconds.
In this webinar, David Zhu, Software Engineering Manager at Alluxio, will present the results of a joint collaboration between Alluxio and a leading SaaS and data infrastructure enterprise that explored leveraging Alluxio as a high-performance caching and acceleration layer atop AWS S3 for ultra-fast querying of Parquet files at PB scale.
David will share:
- How Alluxio delivers sub-millisecond Time-to-First-Byte (TTFB) for Parquet queries, comparable to S3 Express One Zone, without requiring specialized hardware, data format changes, or data migration from your existing data lake.
- The architecture that enables Alluxio’s throughput to scale linearly with cluster size, achieving one million queries per second on a modest 50-node deployment, surpassing S3 Express single-account throughput by 50x without latency degradation.
- Specifics on how Alluxio offloads partial Parquet read operations and reduces overhead, enabling direct, ultra-low-latency point queries in hundreds of microseconds and achieving a 1,000x performance gain over traditional S3 querying methods.
Speaker: David Zhu
David Zhu is a Software Engineer Manager at Alluxio. At Alluxio, David focuses on metadata management and end-to-end performance benchmarking and optimizations. Prior to that, David completed his Ph.D. from UC Berkeley, with a focus on distributed data management systems and operating systems for the data center. David also holds a Bachelor of Software Engineering from the University of Waterloo.
.png)
In this session, Jingwen presents an overview of using Alluxio Edge caching to accelerate Trino or Presto queries. She offers practical best practices for using distributed caching with compute engines. In addition, this session also features insights from real-world examples.
As a cache eviction algorithm, FIFO has a lot of attractive properties, such as simplicity, speed, scalability, and flash-friendliness. The most prominent criticism of FIFO is its low efficiency (high miss ratio). In this talk, Juncheng Yangb describes a simple, scalable FIFO-based algorithm with three static queues (S3-FIFO). Evaluated on 6594 cache traces from 14 datasets, we show that S3- FIFO has lower miss ratios than state-of-the-art algorithms across traces. Moreover, S3-FIFO’s efficiency is robust — it has the lowest mean miss ratio on 10 of the 14 datasets. FIFO queues enable S3-FIFO to achieve good scalability with 6× higher throughput compared to optimized LRU at 16 threads. Our insight is that most objects in skewed workloads will only be accessed once in a short window, so it is critical to evict them early (also called quick demotion). The key of S3-FIFO is a small FIFO queue that filters out most objects from entering the main cache, which provides a guaranteed demotion speed and high demotion precision.
Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
As the AI landscape rapidly evolves, the advancements in generative AI technologies, such as ChatGPT, are driving a need for a robust AI infra stack. This opening keynote will explore the key trends of the AI infra stack in the generative AI era.
In this session, Adit Madan, Director of Product Management at Alluxio, presents an overview of using distributed caching to accelerate model training and serving. He explores the requirements of data access patterns in the ML pipeline and offer practical best practices for using distributed caching in the cloud. This session features insights from real-world examples, such as AliPay, Zhihu, and more.
Machine learning models power Uber’s everyday business. However, developing and deploying a model is not a one-time event but a continuous process that requires careful planning, execution, and monitoring. In this session, Sally (Mihyong) Lee, Senior Staff Engineer & TLM @ Uber, highlights Uber’s practice on the machine learning lifecycle to ensure high model quality.
In this talk, Wanchao Liang, Software Engineer at Meta Pytorch Team, explores the technology advancements of PyTorch Distributed, and dives into the details of how multi-dimensional parallelism is made possible to train Large Language Models by composing different PyTorch native distributed training APIs.
ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
This hands-on session discusses best practices for using PyTorch and Alluxio during model training on AWS. Shawn and Lu provide a step-by-step demonstration of how to use Alluxio on EKS as a distributed cache to accelerate computer vision model training jobs that read datasets from S3. This architecture significantly improves the utilization of GPUs from 30% to 90%+, archives ~5x faster training, and lower cloud storage costs.
As enterprises race to roll out artificial intelligence, often overlookModel training requires extensive computational and GPU resources. When training models on AWS, loading data from S3 often becomes a major bottleneck, wasting valuable GPU cycles. Optimizing data loading can greatly reduce GPU idle time and increase GPU utilization.
In this webinar, Greg Palmer will discuss best practices for efficient data loading during model training on AWS. He will demonstrate how to use Alluxio on EKS as a distributed cache to accelerate PyTorch training jobs that read datasets from S3. This architecture significantly improves the utilization of GPUs from 30% to 90%+, archives ~5x faster training, and lower cloud storage costs.
What you will learn:
- The challenges of feeding data-hungry GPUs in the cloud
- How to accelerate model training by optimizing data loading on AWS
- The reference architecture for running PyTorch jobs with Alluxio cache on EKS while reading data from S3, with benchmark results of training ResNet50 and BERT
- How to use TensorBoard to identify bottlenecks in GPU utilization
As enterprises race to roll out artificial intelligence, often overlooked are the infrastructure needs to support scalable ML model development and deployment. Efforts to effectively access and utilize GPUs often lead to extensive data engineering managing data copies or specialized storage, leading to out-of-control cloud and infrastructure costs.
To address the challenges, enterprises need a new data access layer to connect compute engines to data stores wherever they reside in distributed environments.
Join this webinar with Kevin Petrie, Eckerson Group VP of Research, and Sridhar Venkatesh, Alluxio SVP of Product, to explore tools, techniques, and best practices to remove data access bottlenecks and accelerate AI/ML model training. You will learn:
- Modern requirements for AI/ML model training and data engineering
- The challenges of GPU utilization in machine learning and the need for specialized hardware
- How a new data access layer connects compute to data stores across environments
- Best practices for optimizing ML training and guiding principles for success
Organizations are retooling their enterprise data infrastructure in the race for AI/ML. However, growing datasets, extensive data engineering overhead, high GPU costs, and expensive specialized storage can make it difficult to get fast results from model development.
The data access layer is the key to accelerating your path to AI/ML. In this webinar, Roland Theron, Senior Solutions Engineer at Alluxio, discusses how the data access layer can help you:
- Build AI architecture on your existing data lake without the need for specialized hardware.
- Streamline the time-consuming process of managing data copies in data engineering.
- Speed up training workloads with high GPU utilization.
- Achieve optimal concurrency to deliver models to inference clusters for demanding applications