On-Demand Videos
Nilesh Agarwal, Co-founder & CTO at Inferless, shares insights on accelerating LLM inference in the cloud using Alluxio, tackling key bottlenecks like slow model weight loading from S3 and lengthy container startup time. Inferless uses Alluxio as a three-tier cache system that dramatically cuts model load time by 10x.

In this talk, Jingwen Ouyang, Senior Product Manager at Alluxio, will share how Alluxio make it easy to share and manage data from any storage to any compute engine in any environment with high performance and low cost for your model training, model inference, and model distribution workload.

Storing data as Parquet files on cloud object storage, such as AWS S3, has become prevalent not only for large-scale data lakes but also as lightweight feature stores for training and inference, or as document stores for Retrieval-Augmented Generation (RAG). However, querying petabyte-to-exabyte-scale data lakes directly from S3 remains notoriously slow, with latencies typically ranging from hundreds of milliseconds to several seconds.
In this webinar, David Zhu, Software Engineering Manager at Alluxio, will present the results of a joint collaboration between Alluxio and a leading SaaS and data infrastructure enterprise that explored leveraging Alluxio as a high-performance caching and acceleration layer atop AWS S3 for ultra-fast querying of Parquet files at PB scale.
David will share:
- How Alluxio delivers sub-millisecond Time-to-First-Byte (TTFB) for Parquet queries, comparable to S3 Express One Zone, without requiring specialized hardware, data format changes, or data migration from your existing data lake.
- The architecture that enables Alluxio’s throughput to scale linearly with cluster size, achieving one million queries per second on a modest 50-node deployment, surpassing S3 Express single-account throughput by 50x without latency degradation.
- Specifics on how Alluxio offloads partial Parquet read operations and reduces overhead, enabling direct, ultra-low-latency point queries in hundreds of microseconds and achieving a 1,000x performance gain over traditional S3 querying methods.
Speaker: David Zhu
David Zhu is a Software Engineer Manager at Alluxio. At Alluxio, David focuses on metadata management and end-to-end performance benchmarking and optimizations. Prior to that, David completed his Ph.D. from UC Berkeley, with a focus on distributed data management systems and operating systems for the data center. David also holds a Bachelor of Software Engineering from the University of Waterloo.
.png)
Speed and efficiency are two requirements for the underlying infrastructure for machine learning model development. Data access can bottleneck end-to-end machine learning pipelines as training data volume grows and when large model files are more commonly used for serving. For instance, data loading can constitute nearly 80% of the total model training time, resulting in less than 30% GPU utilization. Also, loading large model files for deployment to production can be slow because of slow network or storage read operations. These challenges are prevalent when using popular frameworks like PyTorch, Ray, or HuggingFace, paired with cloud object storage solutions like S3 or GCS, or downloading models from the HuggingFace model hub.
In this presentation, Lu and Siyuan will offer comprehensive insights into improving speed and GPU utilization for model training and serving. You will learn:
- The data loading challenges hindering GPU utilization
- The reference architecture for running PyTorch and Ray jobs while reading data from S3, with benchmark results of training ResNet50 and BERT
- Real-world examples of boosting model performance and GPU utilization through optimized data access
From Caffe to MXNet, to PyTorch, and more, Xiande Cao, Senior Deep Learning Software Engineer Manager, will share his perspective on the evolution of deep learning frameworks.
Prefill in LLM inference is known to be resource-intensive, especially for long LLM inputs. While better scheduling can mitigate prefill’s impact, it would be fundamentally better to avoid (most of) prefill. This talk introduces our preliminary effort towards drastically minimizing prefill delay for LLM inputs that naturally reuse text chunks, such as in retrieval-augmented generation. While keeping the KV cache of all text chunks in memory is difficult, we show that it is possible to store them on cheaper yet slower storage. By improving the loading process of the reused KV caches, we can still significantly speed up prefill delay while maintaining the same generation quality.
Uber has numerous deep learning models, most of which are highly complex with many layers and a vast number of features. Understanding how these models work is challenging and demands significant resources to experiment with various training algorithms and feature sets. With ML explainability, the ML team aims to bring transparency to these models, helping to clarify their predictions and behavior. This transparency also assists the operations and legal teams in explaining the reasons behind specific prediction outcomes.
In this talk, Eric Wang will discuss the methods Uber used for explaining deep learning models and how we integrated these methods into the Uber AI Michelangelo ecosystem to support offline explaining.
Running AI/ML workloads in different clouds present unique challenges. The key to a manageable multi-cloud architecture is the ability to seamlessly access data across environments with high performance and low cost.
This webinar is designed for data platform engineers, data infra engineers, data engineers, and ML engineers who work with multiple data sources in hybrid or multi-cloud environments. Chanchan and Bin will guide the audience through using Alluxio to greatly simplify data access and make model training and serving more efficient in these environments.
You will learn:
- How to access data in multi-region, hybrid, and multi-cloud like accessing a local file system
- How to run PyTorch to read datasets and write checkpoints to remote storage with Alluxio as the distributed data access layer
- Real-world examples and insights from tech giants like Uber, AliPay and more
Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
In this presentation, Bin Fan (VP of Open Source @ Alluxio) will address a critical challenge of optimizing data loading for distributed Python applications within AI/ML workloads in the cloud, focusing on popular frameworks like Ray and Hugging Face. Integration of Alluxio’s distributed caching for Python applications is accomplished using the fsspec interface, thus greatly improving data access speeds. This is particularly useful in machine learning workflows, where repeated data reloading across slow, unstable or congested networks can severely affect GPU efficiency and escalate operational costs.
Attendees can look forward to practical, hands-on demonstrations showcasing the tangible benefits of Alluxio’s caching mechanism across various real-world scenarios. These demos will highlight the enhancements in data efficiency and overall performance of data-intensive Python applications. This presentation is tailored for developers and data scientists eager to optimize their AI/ML workloads. Discover strategies to accelerate your data processing tasks, making them not only faster but also more cost-efficient.
As GenAI and AI continue to transform businesses, scaling these workloads requires optimized underlying infrastructure. A multi-cloud architecture allows organizations to leverage different cloud services to meet diverse workload demands while maximizing efficiency, reducing costs, and avoiding vendor lock-in. However, achieving a multi-cloud vision can be challenging.
In this webinar, Tarik will share how an agonistic data layer, like Alluxio, allows you to embrace the separation of storage from compute and simplify the adoption of multi-cloud for AI.
- Learn why leveraging multiple cloud providers is critical for balancing performance, scalability, and cost of your AI platform
- Discover how an agnostic data layer like Alluxio provides seamless data access in multi-cloud that bridges storage and compute without data replication
- Gain insights into real-world examples and best practices for deploying AI across on-prem, hybrid, and multi-cloud environments
2024 is gearing up to be an impactful year for AI and analytics. Join us on January 30, as Kevin Petrie (VP of Research at Eckerson Group) and Omid Razavi (SVP of Customer Success at Alluxio) share key trends that data and AI leaders should know. This event will efficiently guide you with market data and expert insights to drive successful business outcomes.
- Assess current and future trends in data and AI with industry experts
- Discover valuable insights and practical recommendations
- Learn best practices to make your enterprise data more accessible for both analytics and AI applications
Uber builds one of the biggest data lakes in the industry, which stores exabytes of data. In this talk, we will introduce the evolution of our data storage architecture, and delve into multiple key initiatives during the past several years.
Specifically, we will introduce:
- Our on-prem HDFS cluster scalability challenges and how we solved them
- Our efficiency optimizations that significantly reduced the storage overhead and unit cost without compromising reliability and performance
- The challenges we are facing during the ongoing Cloud migration and our solutions
Shengxuan Liu from ByteDance presents the new ByteDance’s native Parquet Reader. The talk covers the architecture and key features of the Reader, and how the new Reader is able to facilitate data processing efficiency.
In this session, cloud optimization specialists Chunxu and Siyuan break down the challenges and present a fresh architecture designed to optimize I/O across the data pipeline, ensuring GPUs function at peak performance. The integrated solution of PyTorch/Ray + Alluxio + S3 offers a promising way forward, and the speakers delve deep into its practical applications. Attendees will not only gain theoretical insights but will also be treated to hands-on instructions and demonstrations of deploying this cutting-edge architecture in Kubernetes, specifically tailored for Tensorflow/PyTorch/Ray workloads in the public cloud.