Products
On-Demand Videos
video
AI/ML Infra Meetup | Open Source Michelangelo: Uber's Predictive to Generative end to end ML Lifecycle management platform

In this talk, Eric Wang, Senior Staff Software Engineer introduces Uber’s open-source generative end-to-end ML lifecycle management platform: Michelangelo.
video
AI/ML Infra Meetup | Unlock the Future of Generative AI: TorchTitan's Latest Breakthroughs

In this talk, Jiani Wang, Software Engineer Meta's Pytorch Team, dives into the overview and the latest advancements in TorchTitan.
video
AI/ML Infra Meetup | Bringing Data to GPUs Anywhere + Get Low-Latency on Object Store with Alluxio

In this talk, Bin Fan, VP of Technology at Alluxio, explores how to enable efficient data access across distributed GPU infrastructure, achieving low-latency performance for feature stores and RAG workloads.
.png)
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
video
The hidden engineering behind machine learning products at Helixa
Data and Machine Learning (ML) technologies are now widespread and adopted by literally all industries. Although recent advancements in the field have reached an unthinkable level of maturity, many organizations still struggle with turning these advances into tangible profits. Unfortunately, many ML projects get stuck in a proof-of-concept stage without ever reaching customers and generating revenue. In order to effectively adopt ML technologies, enterprises need to build the right business cases as well as to be ready to face the inevitable technical challenges. In this talk, we will share some common pitfalls, lessons learned, and engineering practices, faced while building customer-facing enterprise ML products. In particular, we will focus on the engineering that delivers real-time audience insights everyday to thousands of marketers via the Helixa’s market research platform.
During the talk you will learn:
- An overview of the Helixa ML end-to-end system
- Useful engineering practices and recommended tools (PyData stack, AWS, Alluxio, scikit-learn, tensorflow, mlflow, jupyter, github, docker, Spark, to name a few..)
- The R&D workflow and how it integrates with the production system
- Infrastructure considerations for scalable and cheap deployment, monitoring, and alerting
- How to leverage modern cloud serverless architectures for data and machine learning applications
Model Training Acceleration
video
Achieving Massive Concurrency and Sub-second query latency on Cloud warehouses and data lakes with kyligence cloud
Enterprises everywhere are racing to build the optimal analytics stack for creating repeatable success with predictive analytics, machine learning, and data applications. Cloud data platforms like data warehouses and data lakes are foundational elements of these software stacks and their associated data pipelines. But existing SQL query methods against these data platforms have repeatedly demonstrated disappointing performance and scaling due to poor concurrency.
In this presentation, we will discuss the use of the intelligent precomputation capabilities of Kyligence Cloud as a means of delivering on the promise of pervasive analytics at scale with massive concurrency and sub-second query latencies on large datasets in the cloud.
Kyligence, with our partner Alluxio, sits between the data platform and the processing layer. Kyligence Cloud delivers precomputed datasets for OLAP queries, BI dashboards, and machine learning applications.
No items found.
video
Accelerating Data Computation on Ceph Objects using Alluxio
In most of the distributed storage systems, the data nodes are decoupled from compute nodes. This is motivated by an improved cost efficiency, storage utilization and a mutually independent scalability of computation and storage. While this consideration is indisputable, several situations exist where moving computation close to the data brings important benefits. Whenever the stored data is to be processed for analytics purposes, all the data needs to be repeatedly moved from the storage to the compute cluster, which leads to reduced performance.
In this talk, we will present how using Alluxio computation and storage ecosystems can better interact benefiting of the “bringing the data close to the code” approach. Moving away from the complete disaggregation of computation and storage, data locality can enhance the computation performance. During this talk, we will present our observations and testing results that will show important enhancements in accelerating Spark Data Analytics on Ceph Objects Storage using Alluxio.
Large Scale Analytics Acceleration
video
Unified Data Access with Gimel
At PayPal & any other data driven enterprise – data users & applications work with a variety of data sources (RDBMS, NoSQL, Messaging, Documents, Big Data, Time Series Databases), compute engines (Spark, Flink, Beam, Hive), languages (Scala, Python, SQL) and execution models (stream, batch, interactive) to process petabytes of data. Due to this complex matrix of technologies and thousands of datasets, engineers spend considerable time learning about different data sources, formats, programming models, APIs, optimizations, etc. which impacts time-to-market (TTM).
To solve this problem and to make product development more effective, PayPal Data Platforms developed “Gimel”, an open source, unified analytics data platform which provides access to any storage through a single unified data API and SQL, which are powered by a centralized data catalog.
Large Scale Analytics Acceleration
video
How to Build a new under filesystem in Alluxio: Apache Ozone as an example
In this talk, Baolong Mao from Tencent will share his experience in developing Apache Ozone under file system, showing how to create a new Under File System in a few steps with minimal lines of code.
No items found.
video
The practice of Presto & Alluxio in E-commerce big data platform
JD.com is one of the largest e-commerce corporations. In big data platform of JD.com, there are tens of thousands of nodes and tens of petabytes off-line data which require millions of spark and MapReduce jobs to process everyday. As the main query engine, thousands of machines work as Presto nodes and Presto plays an import role in the field of In-place analysis and BI tools. Meanwhile, Alluxio is deployed to improve the performance of Presto. The practice of Presto & Alluxio in JD.com benefits a lot of engineers and analysts.
No items found.
video
Data Orchestration for Analytics and AI in the Cloud Era
Data platforms span multiple clusters, regions and clouds to meet the business needs for agility, cost effectiveness, and efficiency. Organizations building data platforms for structured and unstructured data have standardized on separation of storage and compute to remain flexible while avoiding vendor lock-in. Data orchestration has emerged as the foundation of such a data platform for multiple use cases all the way from data ingestion to transformations to analytics and AI.
In this keynote from Haoyuan Li, founder and CEO of Alluxio, we will showcase how organizations have built data platforms based on data orchestration. The need to simplify data management and acceleration across different business personas has given rise to data orchestration as a requisite piece of the modern data platform. In addition, we will outline typical journeys for realizing a hybrid and multi-cloud strategy.
Large Scale Analytics Acceleration
Model Training Acceleration
Hybrid Multi-Cloud
Data Platform Modernization
Data Migration
video
Alluxio Use Cases and Future Directions
In this keynote, Calvin Jia will share some of the hottest use cases in Alluxio 2 and discuss the future directions of the project being pioneered by Alluxio and the community. Bin Fan will provide an overview of the growth of Alluxio open-source community with highlights on community-driven collaboration with engineering teams from Microsoft and Alibaba to advance the technology.
Large Scale Analytics Acceleration
Model Training Acceleration
Hybrid Multi-Cloud
Data Migration
Data Platform Modernization
video
The Future of Computing is Distributed
Distributed applications are not new. The first distributed applications were developed over 50 years ago with the arrival of computer networks, such as ARPANET. Since then, developers have leveraged distributed systems to scale out applications and services, including large-scale simulations, web serving, and big data processing. However, until recently, distributed applications have been the exception, rather than the norm. However, this is changing quickly. There are two major trends fueling this transformation: the end of Moore’s Law and the exploding computational demands of new machine learning applications. These trends are leading to a rapidly growing gap between application demands and single-node performance which leaves us with no choice but to distribute these applications. Unfortunately, developing distributed applications is extremely hard, as it requires world-class experts. To make distributed computing easy, we have developed Ray, a framework for building and running general-purpose distributed applications.
Model Training Acceleration
Data Platform Modernization
video
Introducing the Hub for Data Orchestration
We introduce Data Orchestration Hub, a management service that makes it easy to build an analytics or machine learning platform on data sources across regions to unify data lakes. Easy to use wizards connect compute engines, such as Presto or Spark, to data sources across data centers or from a public cloud to a private data center. In this session, you will witness the use of “The Hub” to connect a compute cluster in the cloud with data sources on-premises using Alluxio. This new service allows you to build a hybrid cloud on your own, without the expertise needed to manage or configure Alluxio.
Large Scale Analytics Acceleration
Hybrid Multi-Cloud
Data Platform Modernization
video
Modernizing Global Shared Data Analytics Platform and our Alluxio Journey
In this keynote, you will learn about the evolution of the global data platform at Rakuten spread across multiple regions, and clouds. In addition, you will hear about the journey across the years, and the use of data orchestration for multiple use cases.
Large Scale Analytics Acceleration
Hybrid Multi-Cloud
Data Platform Modernization