Streaming systems form the backbone of the modern data pipeline as the stream processing capabilities provide insights on events as they arrive. But what if we want to go further than this and execute analytical queries on this real-time data? That’s where Apache Pinot comes in.
OLAP databases used for analytical workloads traditionally executed queries on yesterday’s data with query latency in the 10s of seconds. The emergence of real-time analytics has changed all this and the expectation is that we should now be able to run thousands of queries per second on fresh data with query latencies typically seen on OLTP databases.
Apache Pinot is a realtime distributed OLAP datastore, which is used to deliver scalable real time analytics with low latency. It can ingest data from streaming sources like Kafka, as well as from batch data sources (S3, HDFS, Azure Data Lake, Google Cloud Storage), and provides a layer of indexing techniques that can be used to maximize the performance of queries.
Come to this talk to learn how you can add real-time analytics capability to your data pipeline.
ALLUXIO DAY XV 2022
September 15, 2022
Streaming systems form the backbone of the modern data pipeline as the stream processing capabilities provide insights on events as they arrive. But what if we want to go further than this and execute analytical queries on this real-time data? That’s where Apache Pinot comes in.
OLAP databases used for analytical workloads traditionally executed queries on yesterday’s data with query latency in the 10s of seconds. The emergence of real-time analytics has changed all this and the expectation is that we should now be able to run thousands of queries per second on fresh data with query latencies typically seen on OLTP databases.
Apache Pinot is a realtime distributed OLAP datastore, which is used to deliver scalable real time analytics with low latency. It can ingest data from streaming sources like Kafka, as well as from batch data sources (S3, HDFS, Azure Data Lake, Google Cloud Storage), and provides a layer of indexing techniques that can be used to maximize the performance of queries.
Come to this talk to learn how you can add real-time analytics capability to your data pipeline.
Video:
Presentation Slides:
ALLUXIO DAY XV 2022
September 15, 2022
Streaming systems form the backbone of the modern data pipeline as the stream processing capabilities provide insights on events as they arrive. But what if we want to go further than this and execute analytical queries on this real-time data? That’s where Apache Pinot comes in.
OLAP databases used for analytical workloads traditionally executed queries on yesterday’s data with query latency in the 10s of seconds. The emergence of real-time analytics has changed all this and the expectation is that we should now be able to run thousands of queries per second on fresh data with query latencies typically seen on OLTP databases.
Apache Pinot is a realtime distributed OLAP datastore, which is used to deliver scalable real time analytics with low latency. It can ingest data from streaming sources like Kafka, as well as from batch data sources (S3, HDFS, Azure Data Lake, Google Cloud Storage), and provides a layer of indexing techniques that can be used to maximize the performance of queries.
Come to this talk to learn how you can add real-time analytics capability to your data pipeline.
Video:
Presentation Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.