ALLUXIO DAY IV 2021
June 24, 2021
RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
ALLUXIO DAY IV 2021
June 24, 2021
RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
Video:
Presentation Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

