AI training workloads running on compute engines like PyTorch, TensorFlow, and Ray require consistent, high-throughput access to training data to maintain high GPU utilization. However, with the decoupling of compute and storage and with today’s hybrid and multi-cloud landscape, AI Platform and Data Infrastructure teams are struggling to cost-effectively deliver the high-performance data access needed for AI workloads at scale.
Join Tom Luckenbach, Alluxio Solutions Engineering Manager, to learn how Alluxio enables high-speed, cost-effective data access for AI training workloads in hybrid and multi-cloud architectures, while eliminating the need to manage data copies across regions and clouds.
What Tom will share:
- AI data access challenges in cross-region, cross-cloud architectures.
- The architecture and integration of Alluxio with frameworks like PyTorch, TensorFlow, and Ray using POSIX, REST, or Python APIs across AWS, GCP and Azure.
- A live demo of an AI training workload accessing cross-cloud datasets leveraging Alluxio's distributed cache, unified namespace, and policy-driven data management.
- MLPerf and FIO benchmark results and cost-savings analysis.
AI training workloads running on compute engines like PyTorch, TensorFlow, and Ray require consistent, high-throughput access to training data to maintain high GPU utilization. However, with the decoupling of compute and storage and with today’s hybrid and multi-cloud landscape, AI Platform and Data Infrastructure teams are struggling to cost-effectively deliver the high-performance data access needed for AI workloads at scale.
Join Tom Luckenbach, Alluxio Solutions Engineering Manager, to learn how Alluxio enables high-speed, cost-effective data access for AI training workloads in hybrid and multi-cloud architectures, while eliminating the need to manage data copies across regions and clouds.
What Tom will share:
- AI data access challenges in cross-region, cross-cloud architectures.
- The architecture and integration of Alluxio with frameworks like PyTorch, TensorFlow, and Ray using POSIX, REST, or Python APIs across AWS, GCP and Azure.
- A live demo of an AI training workload accessing cross-cloud datasets leveraging Alluxio's distributed cache, unified namespace, and policy-driven data management.
- MLPerf and FIO benchmark results and cost-savings analysis.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
In this talk, Sandeep Joshi, , Senior Manager at NVIDIA, shares how to accelerate the data access between GPU and storage for AI. Sandeep will dive into two options: CPU- initiated GPUDirect Storage and GPU-initiated SCADA.
Bin Fan, VP of Technology at Alluxio, introduces how Alluxio, a software layer transparently sits between application and S3 (or other object stores), provides sub-ms time to first byte (TTFB) solution, with up to 45x lower latency.
In this talk, Pritish Udgata from Adobe provides a comprehensive overview of implementation challenges and solutions for LLM agents.
Topic include:
- CoT vs RAG vs Agentic AI
- Anatomy of an agent
- Single Agent with MCP
- Multi Agents with A2A
- Implementation Challenges and Solutions