Today, one can easily launch or terminate services with hundreds or thousands of compute instances in just a few seconds on cloud services such as AWS. However, operating, monitoring and maintaining those resources could also easily become a nightmare if the corresponding systems were not designed in a cloud-native way.
In this talk, we share our lessons in building and rebuilding our monitoring systems and data platforms at Electronic Arts (EA). In the first generation of the monitoring system, configurations were manually created for many individual software components and spread over all the resources. As services were started and terminated rapidly over time, it was extremely difficult to keep all configurations up to date. Consequently, on average we received over 1,000 alerts from thousands of machines on a daily basis, which stressed the operations team. We redesigned the system in late 2018 in a project called Monitoring As Code (MAC) emphasizing on version control and automation. MAC manages all the configurations using a GIT project in the same way as software code. Moreover, it establishes standards so that the configurations are automatically generated and deployed to keep everything in sync. As a result, it reduced the daily average number of alerts by two orders of magnitude.
In the first generation of the data platform, we used HDFS as a cache layer between ETL jobs and the underlying AWS storage service S3. However, HDFS is not a special-purpose cache service, so custom code is needed to make it work like a cache. We have to run a backup workflow in every ETL job to backup data to S3 and sync the metadata store of the ETL jobs running on HDFS and that of interactive analytic queries running directly on S3. Moreover, we rely on complex and fragile mechanisms for purging datasets when the clusters are under heavy load. The use of HDFS also makes it a challenge to rapidly scale up the YARN cluster during peak hours and scale it down during off-hours. We are currently redesigning the data platform, mainly by replacing HDFS with a special-purpose data orchestration service called Alluxio. In our initial evaluation, Alluxio not only provides better performance than HDFS but also significantly simplifies the architecture of our data platform and makes it easy to scale up and down and paves the way to a cloud native ETL processing stack.
Today, one can easily launch or terminate services with hundreds or thousands of compute instances in just a few seconds on cloud services such as AWS. However, operating, monitoring and maintaining those resources could also easily become a nightmare if the corresponding systems were not designed in a cloud-native way.
In this talk, we share our lessons in building and rebuilding our monitoring systems and data platforms at Electronic Arts (EA). In the first generation of the monitoring system, configurations were manually created for many individual software components and spread over all the resources. As services were started and terminated rapidly over time, it was extremely difficult to keep all configurations up to date. Consequently, on average we received over 1,000 alerts from thousands of machines on a daily basis, which stressed the operations team. We redesigned the system in late 2018 in a project called Monitoring As Code (MAC) emphasizing on version control and automation. MAC manages all the configurations using a GIT project in the same way as software code. Moreover, it establishes standards so that the configurations are automatically generated and deployed to keep everything in sync. As a result, it reduced the daily average number of alerts by two orders of magnitude.
In the first generation of the data platform, we used HDFS as a cache layer between ETL jobs and the underlying AWS storage service S3. However, HDFS is not a special-purpose cache service, so custom code is needed to make it work like a cache. We have to run a backup workflow in every ETL job to backup data to S3 and sync the metadata store of the ETL jobs running on HDFS and that of interactive analytic queries running directly on S3. Moreover, we rely on complex and fragile mechanisms for purging datasets when the clusters are under heavy load. The use of HDFS also makes it a challenge to rapidly scale up the YARN cluster during peak hours and scale it down during off-hours. We are currently redesigning the data platform, mainly by replacing HDFS with a special-purpose data orchestration service called Alluxio. In our initial evaluation, Alluxio not only provides better performance than HDFS but also significantly simplifies the architecture of our data platform and makes it easy to scale up and down and paves the way to a cloud native ETL processing stack.
Today, one can easily launch or terminate services with hundreds or thousands of compute instances in just a few seconds on cloud services such as AWS. However, operating, monitoring and maintaining those resources could also easily become a nightmare if the corresponding systems were not designed in a cloud-native way.
In this talk, we share our lessons in building and rebuilding our monitoring systems and data platforms at Electronic Arts (EA). In the first generation of the monitoring system, configurations were manually created for many individual software components and spread over all the resources. As services were started and terminated rapidly over time, it was extremely difficult to keep all configurations up to date. Consequently, on average we received over 1,000 alerts from thousands of machines on a daily basis, which stressed the operations team. We redesigned the system in late 2018 in a project called Monitoring As Code (MAC) emphasizing on version control and automation. MAC manages all the configurations using a GIT project in the same way as software code. Moreover, it establishes standards so that the configurations are automatically generated and deployed to keep everything in sync. As a result, it reduced the daily average number of alerts by two orders of magnitude.
In the first generation of the data platform, we used HDFS as a cache layer between ETL jobs and the underlying AWS storage service S3. However, HDFS is not a special-purpose cache service, so custom code is needed to make it work like a cache. We have to run a backup workflow in every ETL job to backup data to S3 and sync the metadata store of the ETL jobs running on HDFS and that of interactive analytic queries running directly on S3. Moreover, we rely on complex and fragile mechanisms for purging datasets when the clusters are under heavy load. The use of HDFS also makes it a challenge to rapidly scale up the YARN cluster during peak hours and scale it down during off-hours. We are currently redesigning the data platform, mainly by replacing HDFS with a special-purpose data orchestration service called Alluxio. In our initial evaluation, Alluxio not only provides better performance than HDFS but also significantly simplifies the architecture of our data platform and makes it easy to scale up and down and paves the way to a cloud native ETL processing stack.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
![](https://cdn.prod.website-files.com/66d9c7ee21a87e61fe5d0e22/66f52d24efdfb829fb980070_rainbow-vortex%201%20(1).png)
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.