Today, one can easily launch or terminate services with hundreds or thousands of compute instances in just a few seconds on cloud services such as AWS. However, operating, monitoring and maintaining those resources could also easily become a nightmare if the corresponding systems were not designed in a cloud-native way.
In this talk, we share our lessons in building and rebuilding our monitoring systems and data platforms at Electronic Arts (EA). In the first generation of the monitoring system, configurations were manually created for many individual software components and spread over all the resources. As services were started and terminated rapidly over time, it was extremely difficult to keep all configurations up to date. Consequently, on average we received over 1,000 alerts from thousands of machines on a daily basis, which stressed the operations team. We redesigned the system in late 2018 in a project called Monitoring As Code (MAC) emphasizing on version control and automation. MAC manages all the configurations using a GIT project in the same way as software code. Moreover, it establishes standards so that the configurations are automatically generated and deployed to keep everything in sync. As a result, it reduced the daily average number of alerts by two orders of magnitude.
In the first generation of the data platform, we used HDFS as a cache layer between ETL jobs and the underlying AWS storage service S3. However, HDFS is not a special-purpose cache service, so custom code is needed to make it work like a cache. We have to run a backup workflow in every ETL job to backup data to S3 and sync the metadata store of the ETL jobs running on HDFS and that of interactive analytic queries running directly on S3. Moreover, we rely on complex and fragile mechanisms for purging datasets when the clusters are under heavy load. The use of HDFS also makes it a challenge to rapidly scale up the YARN cluster during peak hours and scale it down during off-hours. We are currently redesigning the data platform, mainly by replacing HDFS with a special-purpose data orchestration service called Alluxio. In our initial evaluation, Alluxio not only provides better performance than HDFS but also significantly simplifies the architecture of our data platform and makes it easy to scale up and down and paves the way to a cloud native ETL processing stack.
Today, one can easily launch or terminate services with hundreds or thousands of compute instances in just a few seconds on cloud services such as AWS. However, operating, monitoring and maintaining those resources could also easily become a nightmare if the corresponding systems were not designed in a cloud-native way.
In this talk, we share our lessons in building and rebuilding our monitoring systems and data platforms at Electronic Arts (EA). In the first generation of the monitoring system, configurations were manually created for many individual software components and spread over all the resources. As services were started and terminated rapidly over time, it was extremely difficult to keep all configurations up to date. Consequently, on average we received over 1,000 alerts from thousands of machines on a daily basis, which stressed the operations team. We redesigned the system in late 2018 in a project called Monitoring As Code (MAC) emphasizing on version control and automation. MAC manages all the configurations using a GIT project in the same way as software code. Moreover, it establishes standards so that the configurations are automatically generated and deployed to keep everything in sync. As a result, it reduced the daily average number of alerts by two orders of magnitude.
In the first generation of the data platform, we used HDFS as a cache layer between ETL jobs and the underlying AWS storage service S3. However, HDFS is not a special-purpose cache service, so custom code is needed to make it work like a cache. We have to run a backup workflow in every ETL job to backup data to S3 and sync the metadata store of the ETL jobs running on HDFS and that of interactive analytic queries running directly on S3. Moreover, we rely on complex and fragile mechanisms for purging datasets when the clusters are under heavy load. The use of HDFS also makes it a challenge to rapidly scale up the YARN cluster during peak hours and scale it down during off-hours. We are currently redesigning the data platform, mainly by replacing HDFS with a special-purpose data orchestration service called Alluxio. In our initial evaluation, Alluxio not only provides better performance than HDFS but also significantly simplifies the architecture of our data platform and makes it easy to scale up and down and paves the way to a cloud native ETL processing stack.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Nilesh Agarwal, Co-founder & CTO at Inferless, shares insights on accelerating LLM inference in the cloud using Alluxio, tackling key bottlenecks like slow model weight loading from S3 and lengthy container startup time. Inferless uses Alluxio as a three-tier cache system that dramatically cuts model load time by 10x.

In this talk, Jingwen Ouyang, Senior Product Manager at Alluxio, will share how Alluxio make it easy to share and manage data from any storage to any compute engine in any environment with high performance and low cost for your model training, model inference, and model distribution workload.

Storing data as Parquet files on cloud object storage, such as AWS S3, has become prevalent not only for large-scale data lakes but also as lightweight feature stores for training and inference, or as document stores for Retrieval-Augmented Generation (RAG). However, querying petabyte-to-exabyte-scale data lakes directly from S3 remains notoriously slow, with latencies typically ranging from hundreds of milliseconds to several seconds.
In this webinar, David Zhu, Software Engineering Manager at Alluxio, will present the results of a joint collaboration between Alluxio and a leading SaaS and data infrastructure enterprise that explored leveraging Alluxio as a high-performance caching and acceleration layer atop AWS S3 for ultra-fast querying of Parquet files at PB scale.
David will share:
- How Alluxio delivers sub-millisecond Time-to-First-Byte (TTFB) for Parquet queries, comparable to S3 Express One Zone, without requiring specialized hardware, data format changes, or data migration from your existing data lake.
- The architecture that enables Alluxio’s throughput to scale linearly with cluster size, achieving one million queries per second on a modest 50-node deployment, surpassing S3 Express single-account throughput by 50x without latency degradation.
- Specifics on how Alluxio offloads partial Parquet read operations and reduces overhead, enabling direct, ultra-low-latency point queries in hundreds of microseconds and achieving a 1,000x performance gain over traditional S3 querying methods.
Speaker: David Zhu
David Zhu is a Software Engineer Manager at Alluxio. At Alluxio, David focuses on metadata management and end-to-end performance benchmarking and optimizations. Prior to that, David completed his Ph.D. from UC Berkeley, with a focus on distributed data management systems and operating systems for the data center. David also holds a Bachelor of Software Engineering from the University of Waterloo.