Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access. Alluxio enables you to embrace the separation of storage from compute and use Alluxio data orchestration to simplify adoption of the data lake and data mesh paradigms for analytics and AI/ML workloads.
Join Alluxio’s Sr. Product Mgr., Adit Madan, to learn:
- Key challenges with architecting a successful heterogeneous data platform
- How data orchestration can overcome data access challenges in a distributed, heterogeneous environment
- How to identify ways to use Alluxio to meet the needs of your own data environment and workload requirements
Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access. Alluxio enables you to embrace the separation of storage from compute and use Alluxio data orchestration to simplify adoption of the data lake and data mesh paradigms for analytics and AI/ML workloads.
Join Alluxio’s Sr. Product Mgr., Adit Madan, to learn:
- Key challenges with architecting a successful heterogeneous data platform
- How data orchestration can overcome data access challenges in a distributed, heterogeneous environment
- How to identify ways to use Alluxio to meet the needs of your own data environment and workload requirements
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

