Within Alluxio, the master processes keep track of global metadata for the file system. This includes file system metadata, block cache metadata, and worker metadata. When a client interacts with the filesystem it must first query or update the metadata on the master processes. Given their central role in the system, master processes can be backed by a highly available, fault tolerant replicated journal. This talk will introduce and compare the two available implementations of this journal in Alluxio, the first using Zookeeper and the more recent version using Raft.
ALLUXIO DAY X 2022
March 3, 2022
Within Alluxio, the master processes keep track of global metadata for the file system. This includes file system metadata, block cache metadata, and worker metadata. When a client interacts with the filesystem it must first query or update the metadata on the master processes. Given their central role in the system, master processes can be backed by a highly available, fault tolerant replicated journal. This talk will introduce and compare the two available implementations of this journal in Alluxio, the first using Zookeeper and the more recent version using Raft.
Video:
Presentation Slides:
ALLUXIO DAY X 2022
March 3, 2022
Within Alluxio, the master processes keep track of global metadata for the file system. This includes file system metadata, block cache metadata, and worker metadata. When a client interacts with the filesystem it must first query or update the metadata on the master processes. Given their central role in the system, master processes can be backed by a highly available, fault tolerant replicated journal. This talk will introduce and compare the two available implementations of this journal in Alluxio, the first using Zookeeper and the more recent version using Raft.
Video:
Presentation Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.