Products
Tech Talk: Accelerate Spark Workloads on S3
June 28, 2019
While running analytics workloads using EMR Spark on S3 is a common deployment today, many organizations face issues in performance and consistency. EMR can be bottlenecked when reading large amounts of data from S3, and sharing data across multiple stages of a pipeline can be difficult as S3 is eventually consistent for read-your-own-write scenarios.
A simple solution is to run Spark on Alluxio as a distributed cache for S3. Alluxio stores data in memory close to Spark, providing high performance, in addition to providing data accessibility and abstraction for deployments in both public and hybrid clouds.
In this webinar you’ll learn how to:
- Increase performance by setting up Alluxio so Spark can seamlessly read from and write to S3
- Use Alluxio as the input/output for Spark applications
- Save and load Spark RDDs and Dataframes with Alluxio
While running analytics workloads using EMR Spark on S3 is a common deployment today, many organizations face issues in performance and consistency. EMR can be bottlenecked when reading large amounts of data from S3, and sharing data across multiple stages of a pipeline can be difficult as S3 is eventually consistent for read-your-own-write scenarios.
A simple solution is to run Spark on Alluxio as a distributed cache for S3. Alluxio stores data in memory close to Spark, providing high performance, in addition to providing data accessibility and abstraction for deployments in both public and hybrid clouds.
In this webinar you’ll learn how to:
- Increase performance by setting up Alluxio so Spark can seamlessly read from and write to S3
- Use Alluxio as the input/output for Spark applications
- Save and load Spark RDDs and Dataframes with Alluxio
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
AI/ML Infra Meetup | AI at scale Architecting Scalable, Deployable and Resilient Infrastructure

Pratik Mishra delivered insights on architecting scalable, deployable, and resilient AI infrastructure at scale. His discussion on fault tolerance, checkpoint optimization, and the democratization of AI compute through AMD's open ecosystem resonated strongly with the challenges teams face in production ML deployments.
September 30, 2025
AI/ML Infra Meetup | Alluxio + S3 A Tiered Architecture for Latency-Critical, Semantically-Rich Workloads

In this talk, Bin Fan, VP of Technology at Alluxio, presents on building tiered architectures that bring sub-millisecond latency to S3-based workloads. The comparison showing Alluxio's 45x performance improvement over S3 Standard and 5x over S3 Express One Zone demonstrated the critical role the performance & caching layer plays in modern AI infrastructure.
September 30, 2025
AI/ML Infra Meetup | Achieving Double-Digit Millisecond Offline Feature Stores with Alluxio

In this talk, Greg Lindstrom shared how Blackout Power Trading achieved double-digit millisecond offline feature store performance using Alluxio, a game-changer for real-time power trading where every millisecond counts. The 60x latency reduction for inference queries was particularly impressive.
September 30, 2025