Many companies we talk to have on premises data lakes and use the cloud(s) to burst compute. Many are now establishing new object data lakes as well. As a result, running analytics such as Hive, Spark, Presto and machine learning are experiencing sluggish response times with data and compute in multiple locations. We also know there is an immense and growing data management burden to support these workflows.
In this talk, we will walk through what Alluxio’s Data Orchestration for the hybrid cloud era is and how it solves the performance and data management challenges we see.
In this tech talk, we’ll go over:
- What is Alluxio Data Orchestration?
- How does it work?
- Alluxio customer results
ALLUXIO WEBINAR
Many companies we talk to have on premises data lakes and use the cloud(s) to burst compute. Many are now establishing new object data lakes as well. As a result, running analytics such as Hive, Spark, Presto and machine learning are experiencing sluggish response times with data and compute in multiple locations. We also know there is an immense and growing data management burden to support these workflows.
In this talk, we will walk through what Alluxio’s Data Orchestration for the hybrid cloud era is and how it solves the performance and data management challenges we see.
In this tech talk, we’ll go over:
- What is Alluxio Data Orchestration?
- How does it work?
- Alluxio customer results
Video:
Slides:
ALLUXIO WEBINAR
Many companies we talk to have on premises data lakes and use the cloud(s) to burst compute. Many are now establishing new object data lakes as well. As a result, running analytics such as Hive, Spark, Presto and machine learning are experiencing sluggish response times with data and compute in multiple locations. We also know there is an immense and growing data management burden to support these workflows.
In this talk, we will walk through what Alluxio’s Data Orchestration for the hybrid cloud era is and how it solves the performance and data management challenges we see.
In this tech talk, we’ll go over:
- What is Alluxio Data Orchestration?
- How does it work?
- Alluxio customer results
Video:
Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.