PRESTO SUMMIT NYC
This talk describes a stack of open-source projects to serve high-concurrent and low-latency SQL queries using Presto with Alluxio on big data in the cloud. Deploying Alluxio as a data orchestration layer to access cloud storage object storage (e.g., AWS S3), this architecture greatly enhances the data locality of Presto with distributed and cross-query caching, thus avoids reading the same data repeatedly from the cloud storage.
In addition, since the Alluxio v2.1 release, Alluxio provides structured data management to deliver additional performance beyond caching raw bytes of input files or objects, but also manage and transform structured data. For example, Alluxio can convert data in raw formats (such as CSV) into a more compact and performant file format (such as Parquet) to accelerate Presto queries by 10x for certain workloads with much less CPU used.
This talk will cover an overview of Alluxio’s core concepts, architecture, data flow, as well as the use cases from internet companies like Walmart, JD.com, Ryte that run this stack of Presto and Alluxio at the scale in production.
Complete the form below to access the full overview:
Presentations
Use Alluxio to Unify Storage Systems in Suning
Suning is one of the leading commercial enterprises in China with two public companies in China and Japan respectively. It uses Alluxio to unify storage systems and manage multiple HDFS clusters.
STRATA DATA CONFERENCE LONDON 2018
JD.com is China’s largest online retailer and its biggest overall retailer, as well as the country’s biggest internet company by revenue. Currently, JD.com’s BDP platform runs more than 400,000 jobs (15+ PB) daily, on a system with more than 15,000 cluster nodes and a total capacity of 210 PB.
Alluxio, formerly Tachyon, is the world’s first system that unifies disparate storage systems at memory speed. In the big data ecosystem, Alluxio lies between computation frameworks or jobs and various kinds of storage systems. Additionally, Alluxio’s memory-centric architecture enables data access orders of magnitude faster than existing solutions.
Alluxio has run in JD.com’s production environment on 100 nodes for six months. Mao Baolong, Yiran Wu, and Yupeng Fu explain how JD.com uses Alluxio to provide support for ad hoc and real-time stream computing, using Alluxio-compatible HDFSURLs and Alluxio as a pluggable optimization component. To give just one example, one framework, JDPresto, has seen a 10x performance improvement on average. This work has also extended Alluxio and enhanced the syncing between Alluxio and HDFS for consistency.
Alluxio in MOMO: Accelerating Ad Hoc Analysis
From our friends at MOMO
MOMO, a leading pan-entertainment social platform in China, has deployed Alluxio to accelerate ad-hoc query analytics. In the course of evaluating the best fit for Alluxio in their infrastructure they conducted several performance tests to understand how ad-hoc query analytics behaved in several scenarios. These tests give real-world insight to the performance benefits Alluxio provides. The MOMO findings include:
- With Alluxio, performance was improved 3-5x over the current mode
- Even when initially reading ‘cold’ data Alluxio delivered superior performance in most cases
- Alluxio can effectively scale-out to improve performance as requirements grow