In today’s AI-driven world, organizations face unprecedented demands for powerful AI infrastructure to fuel their model training and serving workloads. Performance bottlenecks, cost inefficiencies, and management complexities pose significant challenges for AI platform teams supporting large-scale model training and serving. On July 9, 2024, we introduced Alluxio Enterprise AI 3.2, a groundbreaking solution designed to address these critical issues in the ever-evolving AI landscape.
In this webinar, Shouwei Chen introduced exciting new features of Alluxio Enterprise AI 3.2:
- Leveraging GPU resources anywhere accessing remote data with the same local performance
- Enhanced I/O performance with 97%+ GPU utilization for popular language model training benchmarks
- Achieving the same performance as HPC storage on existing data lake without additional HPC storage infrastructure
- New Python FileSystem API to seamlessly integrate with Python applications like Ray
- Other new features, include advanced cache management, rolling upgrades, and CSI failover
In today’s AI-driven world, organizations face unprecedented demands for powerful AI infrastructure to fuel their model training and serving workloads. Performance bottlenecks, cost inefficiencies, and management complexities pose significant challenges for AI platform teams supporting large-scale model training and serving. On July 9, 2024, we introduced Alluxio Enterprise AI 3.2, a groundbreaking solution designed to address these critical issues in the ever-evolving AI landscape.
In this webinar, Shouwei Chen introduced exciting new features of Alluxio Enterprise AI 3.2:
- Leveraging GPU resources anywhere accessing remote data with the same local performance
- Enhanced I/O performance with 97%+ GPU utilization for popular language model training benchmarks
- Achieving the same performance as HPC storage on existing data lake without additional HPC storage infrastructure
- New Python FileSystem API to seamlessly integrate with Python applications like Ray
- Other new features, include advanced cache management, rolling upgrades, and CSI failover
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

