Kubernetes is widely used across enterprises to orchestrate computation. And while Kubernetes helps improve flexibility and portability for computation in public/hybrid cloud environments across infrastructure providers, running data-intensive workloads can be challenging.
When it comes to efficiently moving data closer to Spark or Presto frameworks, co-locating data with these frameworks and accessing data from multiple or remote clouds is hard to do. That’s where Alluxio, an open source data orchestration platform, can help.
Alluxio enables data locality with your Spark and Presto workloads for faster performance and better data accessibility in Kubernetes. It also provides portability across storage providers.
In this on demand tech talk we’ll give a quick overview of Alluxio and the use cases it powers for Spark/Presto in Kubernetes. We’ll show you how to set up Alluxio and Spark/Presto to run in Kubernetes as well.
Kubernetes is widely used across enterprises to orchestrate computation. And while Kubernetes helps improve flexibility and portability for computation in public/hybrid cloud environments across infrastructure providers, running data-intensive workloads can be challenging.
When it comes to efficiently moving data closer to Spark or Presto frameworks, co-locating data with these frameworks and accessing data from multiple or remote clouds is hard to do. That’s where Alluxio, an open source data orchestration platform, can help.
Alluxio enables data locality with your Spark and Presto workloads for faster performance and better data accessibility in Kubernetes. It also provides portability across storage providers.
In this on demand tech talk we’ll give a quick overview of Alluxio and the use cases it powers for Spark/Presto in Kubernetes. We’ll show you how to set up Alluxio and Spark/Presto to run in Kubernetes as well.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos

Fireworks AI is a leading inference cloud provider for Generative AI, powering real-time inference and fine-tuning services for customers' applications that require minimal latency, high throughput, and high concurrency. Their GPU infrastructure spans 10+ clouds and 15+ regions, serving enterprises and developers deploying production AI workloads at scale.
With model sizes reaching 70GB+, Fireworks AI faced critical challenges: eliminating cold start delays, managing highly concurrent model downloads across GPU clusters, reducing tens of thousands in annual cloud egress costs, and automating manual pipeline management that consumed 4+ hours weekly. They chose Alluxio as their solution to scale with their hyper-growth without requiring dedicated infrastructure resources.
In this tech talk, Akram Bawayah, Software Engineer at Fireworks AI, and Bin Fan, VP of Technology at Alluxio, share how Fireworks AI uses Alluxio to power their multi-cloud inference infrastructure.
They discuss:
- How Fireworks AI uses Alluxio in its high-performance model distribution system to deliver fast, reliable inference across multiple clouds
- How implementing Alluxio distributed caching achieved 1TB/s+ model deployment throughput, reducing model loading from hours to minutes while significantly cutting cloud egress costs
- How to simplify infrastructure operations and seamlessly scale model distribution across multi-cloud GPU environments

