On-Demand Videos
Nilesh Agarwal, Co-founder & CTO at Inferless, shares insights on accelerating LLM inference in the cloud using Alluxio, tackling key bottlenecks like slow model weight loading from S3 and lengthy container startup time. Inferless uses Alluxio as a three-tier cache system that dramatically cuts model load time by 10x.

In this talk, Jingwen Ouyang, Senior Product Manager at Alluxio, will share how Alluxio make it easy to share and manage data from any storage to any compute engine in any environment with high performance and low cost for your model training, model inference, and model distribution workload.

Storing data as Parquet files on cloud object storage, such as AWS S3, has become prevalent not only for large-scale data lakes but also as lightweight feature stores for training and inference, or as document stores for Retrieval-Augmented Generation (RAG). However, querying petabyte-to-exabyte-scale data lakes directly from S3 remains notoriously slow, with latencies typically ranging from hundreds of milliseconds to several seconds.
In this webinar, David Zhu, Software Engineering Manager at Alluxio, will present the results of a joint collaboration between Alluxio and a leading SaaS and data infrastructure enterprise that explored leveraging Alluxio as a high-performance caching and acceleration layer atop AWS S3 for ultra-fast querying of Parquet files at PB scale.
David will share:
- How Alluxio delivers sub-millisecond Time-to-First-Byte (TTFB) for Parquet queries, comparable to S3 Express One Zone, without requiring specialized hardware, data format changes, or data migration from your existing data lake.
- The architecture that enables Alluxio’s throughput to scale linearly with cluster size, achieving one million queries per second on a modest 50-node deployment, surpassing S3 Express single-account throughput by 50x without latency degradation.
- Specifics on how Alluxio offloads partial Parquet read operations and reduces overhead, enabling direct, ultra-low-latency point queries in hundreds of microseconds and achieving a 1,000x performance gain over traditional S3 querying methods.
Speaker: David Zhu
David Zhu is a Software Engineer Manager at Alluxio. At Alluxio, David focuses on metadata management and end-to-end performance benchmarking and optimizations. Prior to that, David completed his Ph.D. from UC Berkeley, with a focus on distributed data management systems and operating systems for the data center. David also holds a Bachelor of Software Engineering from the University of Waterloo.
.png)
In this talk, Baolong Mao from Tencent will share his experience in developing Apache Ozone under file system, showing how to create a new Under File System in a few steps with minimal lines of code.
JD.com is one of the largest e-commerce corporations. In big data platform of JD.com, there are tens of thousands of nodes and tens of petabytes off-line data which require millions of spark and MapReduce jobs to process everyday. As the main query engine, thousands of machines work as Presto nodes and Presto plays an import role in the field of In-place analysis and BI tools. Meanwhile, Alluxio is deployed to improve the performance of Presto. The practice of Presto & Alluxio in JD.com benefits a lot of engineers and analysts.
Data platforms span multiple clusters, regions and clouds to meet the business needs for agility, cost effectiveness, and efficiency. Organizations building data platforms for structured and unstructured data have standardized on separation of storage and compute to remain flexible while avoiding vendor lock-in. Data orchestration has emerged as the foundation of such a data platform for multiple use cases all the way from data ingestion to transformations to analytics and AI.
In this keynote from Haoyuan Li, founder and CEO of Alluxio, we will showcase how organizations have built data platforms based on data orchestration. The need to simplify data management and acceleration across different business personas has given rise to data orchestration as a requisite piece of the modern data platform. In addition, we will outline typical journeys for realizing a hybrid and multi-cloud strategy.
In this keynote, Calvin Jia will share some of the hottest use cases in Alluxio 2 and discuss the future directions of the project being pioneered by Alluxio and the community. Bin Fan will provide an overview of the growth of Alluxio open-source community with highlights on community-driven collaboration with engineering teams from Microsoft and Alibaba to advance the technology.
Distributed applications are not new. The first distributed applications were developed over 50 years ago with the arrival of computer networks, such as ARPANET. Since then, developers have leveraged distributed systems to scale out applications and services, including large-scale simulations, web serving, and big data processing. However, until recently, distributed applications have been the exception, rather than the norm. However, this is changing quickly. There are two major trends fueling this transformation: the end of Moore’s Law and the exploding computational demands of new machine learning applications. These trends are leading to a rapidly growing gap between application demands and single-node performance which leaves us with no choice but to distribute these applications. Unfortunately, developing distributed applications is extremely hard, as it requires world-class experts. To make distributed computing easy, we have developed Ray, a framework for building and running general-purpose distributed applications.
We introduce Data Orchestration Hub, a management service that makes it easy to build an analytics or machine learning platform on data sources across regions to unify data lakes. Easy to use wizards connect compute engines, such as Presto or Spark, to data sources across data centers or from a public cloud to a private data center. In this session, you will witness the use of “The Hub” to connect a compute cluster in the cloud with data sources on-premises using Alluxio. This new service allows you to build a hybrid cloud on your own, without the expertise needed to manage or configure Alluxio.
In this keynote, you will learn about the evolution of the global data platform at Rakuten spread across multiple regions, and clouds. In addition, you will hear about the journey across the years, and the use of data orchestration for multiple use cases.
Over the years, Alluxio has grown significantly to be the data orchestration framework for the cloud. The community developers and users have contributed a lot of effort and innovation to make Alluxio the system it is today. There are many users and companies deploying Alluxio at very large scale, and with the large scale, comes different types of challenges.
In this talk, I will introduce the high-level architecture of the current system, and present the various components of Alluxio. Also, I will discuss some of the main challenges of large scale Alluxio deployments, and the lessons we learned from those environments. This talk will detail some of the major scalability improvements added in the past several months, and how users can benefit from the changes.
ALLUXIO COMMUNITY OFFICE HOUR
We are extremely excited to announce the release of Alluxio 2.4.0!
Alluxio 2.4.0 focuses on features critical to large scale, production deployments in Cloud and Hybrid Cloud environments. Features such as highly scalable metadata journaling, aggregate cluster metrics monitoring, and automated detection of JVM pauses further improve Alluxio’s suitability for demanding workloads. Devops tools are also key for triaging issues when they occur. In Alluxio 2.4 we further improve the cluster wide log collection framework. Finally, Alluxio is continually expanding its state of the art integrations with frameworks and storage systems. Alluxio 2.4 introduces and improves integrations with Kubernetes, Azure Data Lake Storage, and Apache Ozone. Alluxio 2.4 is also the first Alluxio release that has support for Java 11.
In this Office Hour, we will go over:
- Expanded metadata service
- Cloud native deployment
- Simplified DevOps and system monitoring
- Support for Java 11
ALLUXIO COMMUNITY OFFICE HOUR
In this talk, we describe the architecture to migrate analytics workloads incrementally to any public cloud (AWS, Google Cloud Platform, or Microsoft Azure) directly on on-prem data without copying the data to cloud storage.
In this Office Hour:
- We will go over an architecture for running elastic compute clusters in the cloud using on-prem HDFS.
- Have a casual online video chat with Alluxio Open Source core maintainers to address any Alluxio related questions from our community members
Over the last few years, organizations have worked towards the separation of storage and compute for a number of benefits in the areas of cost, data duplication and data latency. Cloud resolves most of these issues but comes to the expense of needing a way to query data on remote storages. Alluxio and Presto are a powerful combination to address the compute problem, which is part of the strategy used by Simbiose Ventures to create a product called StorageQuery – A platform to query files in cloud storages with SQL.
This talk will focus on:
- How Alluxio fits StorageQuery’s tech stack;
- Advantages of using Alluxio as a cache layer and its unified filesystem
- Development of new under file system for Backblaze B2 and fine-grained code documentation;
- ShannonDB remote storage mode.