Accessing data to run analytic workloads in Spark across data centers and/or clouds can be challenging. Additionally, network I/O can bottleneck Spark jobs that need to read a large amount of data. A common solution is to deploy an HDFS cluster closer to Spark as a caching layer and manually copy the input data to HDFS first, purging it afterward. But this ETL process can be both time-consuming and also error-prone.
A more efficient and simpler solution is to run Spark on Alluxio as a distributed cache on top of the remote data source. While caching data transparently based on access patterns and storing the working set closer, Alluxio provides Spark jobs much higher I/O throughput with enhanced data locality. In addition, Alluxio also provides data accessibility and abstraction for deployments in hybrid and multi-cloud environments.
In this Office Hour, we will go over how to:
- Burst on-prem Spark workloads to the cloud with Alluxio so Spark can seamlessly read from and write to remote data storage
- Use Alluxio as the input/output for Spark applications
- Save and load Spark RDDs and Dataframes with Alluxio
ALLUXIO COMMUNITY OFFICE HOUR
Accessing data to run analytic workloads in Spark across data centers and/or clouds can be challenging. Additionally, network I/O can bottleneck Spark jobs that need to read a large amount of data. A common solution is to deploy an HDFS cluster closer to Spark as a caching layer and manually copy the input data to HDFS first, purging it afterward. But this ETL process can be both time-consuming and also error-prone.
A more efficient and simpler solution is to run Spark on Alluxio as a distributed cache on top of the remote data source. While caching data transparently based on access patterns and storing the working set closer, Alluxio provides Spark jobs much higher I/O throughput with enhanced data locality. In addition, Alluxio also provides data accessibility and abstraction for deployments in hybrid and multi-cloud environments.
In this Office Hour, we will go over how to:
- Burst on-prem Spark workloads to the cloud with Alluxio so Spark can seamlessly read from and write to remote data storage
- Use Alluxio as the input/output for Spark applications
- Save and load Spark RDDs and Dataframes with Alluxio
Video:
Slides:
ALLUXIO COMMUNITY OFFICE HOUR
Accessing data to run analytic workloads in Spark across data centers and/or clouds can be challenging. Additionally, network I/O can bottleneck Spark jobs that need to read a large amount of data. A common solution is to deploy an HDFS cluster closer to Spark as a caching layer and manually copy the input data to HDFS first, purging it afterward. But this ETL process can be both time-consuming and also error-prone.
A more efficient and simpler solution is to run Spark on Alluxio as a distributed cache on top of the remote data source. While caching data transparently based on access patterns and storing the working set closer, Alluxio provides Spark jobs much higher I/O throughput with enhanced data locality. In addition, Alluxio also provides data accessibility and abstraction for deployments in hybrid and multi-cloud environments.
In this Office Hour, we will go over how to:
- Burst on-prem Spark workloads to the cloud with Alluxio so Spark can seamlessly read from and write to remote data storage
- Use Alluxio as the input/output for Spark applications
- Save and load Spark RDDs and Dataframes with Alluxio
Video:
Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.