Alluxio Blog

The Practice of Alluxio in Ctrip Real-Time Computing Platform

Today, real-time computation platform is becoming increasingly important in many organizations. In this article, we will describe how applies Alluxio to accelerate the Spark SQL real-time jobs and maintain the jobs’ consistency during the downtime of our internal data lake (HDFS). In addition, we leverage Alluxio as a caching layer to dramatically reduce the workload pressure on our HDFS NameNode.

Getting Started with the Alluxio-Presto Sandbox

The Alluxio-Presto sandbox is a docker application featuring installations of MySQL, Hadoop, Hive, Presto, and Alluxio. The sandbox lets you easily dive into an interactive environment where you can explore Alluxio, run queries with Presto, and see the performance benefits of using Alluxio in a big data software stack.

2.0 is here! Embrace silos, orchestrate data, accelerate innovation!

Here in New York, at the AWS Summit, we are super excited to announce that Alluxio 2.0 is here, our most major release since the Alluxio launch. A couple months ago, we released 2.0 Preview – which included some of the capabilities, but 2.0 now includes even more, to continue building on to our data orchestration approach for the cloud.

Recap: Presto Summit SF 2019

Alluxio is a proud sponsor and exhibitor at the Presto Summit in San Francisco.
What’s Presto Summit? It’s the leading Presto conference co-organized by our partner Starburst Data and the Presto Software Foundation.

Hybrid Environments for Data Analytics is a Possibility

As the data ecosystem becomes massively complex and more and more disaggregated, data analysts and end users have trouble adapting and working with hybrid environments. The proliferation of compute applications along with storage mediums leads to a hybrid model that we are just not accustomed to.
With this disaggregated system data engineers now come across a multitude of problems that they must overcome in order to get meaningful insights.

Effective Data Engineering in the Cloud World

Cloud has changed the dynamics of data engineering as well as the behavior of data engineers in many ways. This is primarily because a data engineer on premise only dealt with databases and some parts of the hadoop stack.
In the cloud, things are a bit different. Data engineers suddenly need to think different and broader. Instead of being purely focused on data infrastructure, you are now almost a full stack engineer (leaving out the final end application perhaps). Compute, containers, storage, data movement, performance, network — skills are increasing needed across the broader stack. Here are some design concept and data stack elements to keep in mind.

Embracing Data Silos — the journey through a fragmented data world

Over the years of working in the big data and machine learning space, we frequently hear from data engineers that the biggest obstacle to extracting value from data is being able to access the data efficiently. Data silos, isolated islands of data, are often viewed by data engineers as the key culprit or public enemy №1. There have been many attempts to do away with data silos, but those attempts themselves have resulted in yet another data silo, with data lakes being one such example. Rather than attempting to eliminate data silos, we believe the right approach is to embrace them.