Blog

Alluxio Blog

Testing Distributed Systems at 1000+ node Scale for the Cost of a Large Pizza, and yes, on AWS!

Testing distributed systems at scale is typically a costly yet necessary process. At Alluxio we take testing very seriously as organizations across the world rely on our technology, therefore, a problem we want to solve is how to test at scale without breaking the bank. In this blog we are going to show how the maintainers of the Alluxio open source project build and test our system at scale cost-effectively using public cloud infrastructure. We test with the most popular frameworks, such as Spark and Hive, and pervasive storage systems, such as HDFS and S3. Using Amazon AWS EC2, we are able to test 1000+ worker clusters, at a cost of about $16 per hour.

Presto on Alluxio: How Netease Games leveraged Alluxio to boost ad hoc SQL on HDFS

Netease Games is the operator for many popular online games in China like “World of Warcraft” and “Hearthstone”. Netease Games also has developed quite a few popular games on its own such as “Fantasy Westward Journey 2”, “Westward Journey 2”, “World 3”, “League of Immortals”. The strong growth of the business drives the demand to build and maintain a data platform handling a massive amount of data and delivering insights promptly from the data. Given our data scale, it is very challenging to support high-performance ad-hoc queries to the data with results generated in a timely manner.

Top 10 Tips for Making the Spark + Alluxio Stack Blazing Fast

The Apache Spark + Alluxio stack is getting quite popular particularly for the unification of data access across S3 and HDFS. In addition, compute and storage are increasingly being separated causing larger latencies for queries. Alluxio is leveraged as compute-side virtual storage to improve performance. But to get the best performance, like any technology stack, you need to follow the best practices. This article provides the top 10 tips for performance tuning for real-world workloads when running Spark on Alluxio with data locality giving the most bang for the buck.

Deploying Big Data Workloads on Object Storage Without Performance Penalty

As the amount of data being collected and analyzed by Enterprises continues to grow unabated, more attention is being placed on managing the cost of storing the data relative to performance. Hadoop provides a scalable and fast way of storing and analyzing data, however, the cost of storing data in Hadoop is typically higher compared to alternative technologies like Object Stores.

Developer Tip: Why Did My Job Fail with Error Message “Class alluxio.hadoop.FileSystem not found”?

From time to time, a question pops up on the user mailing list referencing job failures with the error message “java.lang.ClassNotFoundException: Class alluxio.hadoop.FileSystem not found”. This post explains the reason for the failure and the solution to the issue when it occurs.
This error indicates the Alluxio client is not available at runtime. This causes an exception when the job tries to access the Alluxio filesystem but fails to find the implementation of Alluxio client to connect to the service.

New York Meetup Recap – September 2018

we held our first New York City Alluxio Meetup! Work-Bench was very generous for hosting the Alluxio meetup in Manhattan. This was the first US Alluxio meetup outside of the Bay Area, so it was extremely exciting to get to meet Alluxio enthusiasts on the east coast!
The meetup focused on users of Alluxio with different applications from Hive and Presto. As an introduction, Haoyuan Li (creator and founder of Alluxio) and Bin Fan (founding engineer of Alluxio) gave an overview of Alluxio and the new features and enhancements of the new v1.8.0 release.

A Better Big Data Ecosystem with Hadoop and Hitachi Content Platform (Part1)

This blog explores the challenges customers are facing with storing data long term in Hadoop, and discusses what the Hitachi Content Platform team is doing to help our customers solve these challenges with the help of Alluxio.
Data is at the center of our digital world and for years Hadoop has been the go-to data processing platform because it is fast and scalable. While Hadoop has solved the data storage and processing problem for the last ~10 years, it achieves this by scaling storage and compute capacity in parallel. As a result, Hadoop environments have continued to expand compute capacity well beyond their needs as more and more of the storage is consumed by older, inactive data.

Effective caching for Spark RDDs with Alluxio

Recently, Qunar deployed Alluxio with Spark in production and found that Alluxio enables Spark streaming jobs to run 15x to 300x faster. In their case study, they described how Alluxio improved their system architecture, and mentioned that some existing Spark jobs would slow down or would never finish because they would run out of memory. After using Alluxio, those jobs were able to finish, because the data could be stored in Alluxio, instead of within Spark.
In this blog, we show by saving RDDs in Alluxio, Alluxio can keep larger data sets in-memory for faster Spark applications, as well as enable sharing of RDDs across separate Spark applications.