Bursting Apache Spark Workloads to the Cloud on Remote Data
Accessing data to run analytic workloads in Spark across data centers and/or clouds can be challenging. Additionally, network I/O can bottleneck Spark jobs that need to read a large amount of data. A common solution is to deploy an HDFS cluster closer to Spark as a caching layer and manually copy the input data to HDFS first, purging it afterward. But this ETL process can be both time-consuming and also error-prone.
Tags: cloud bursting, hybrid cloud, multi cloud, remote data, spark, spark workloads