Build a hybrid data lake and burst processing to Google Cloud Dataproc with Alluxio

Alluxio Tech Talk *

Join us for this tech talk where we will show you how Alluxio can help burst your private computing environment to Google Cloud, minimizing costs and I/O overhead. Alluxio coupled with Google’s open source data and analytics processing engine, Dataproc, enables zero-copy burst for faster query performance in the cloud so you can take advantage of resources that are not local to your data, without the need for managing the copying or syncing of that data.

Alluxio Accelerates Deep Learning in Hybrid Cloud using Intel’s Analytics Zoo open source platform powered by oneAPI

This article describes how Alluxio accelerates the training of deep learning models in a hybrid cloud environment with Intel’s Analytics Zoo open source platform, powered by oneAPI. Details on the new architecture and workflow, as well as Alluxio’s performance benefits and benchmarks results will be discussed.

Tags: , , , , , , , ,

Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio

Today, many people run deep learning applications with training data from separate storage such as object storage or remote data centers. This presentation will demo the Intel Analytics Zoo + Alluxio stack, an architecture that enables high performance while keeping cost and resource efficiency balanced without network being I/O bottlenecked.

Tags: , , , , , , ,

“Zero-Copy” Hybrid Cloud for Data Analytics – Strategy, Architecture and Benchmark Report

This whitepaper details how to leverage a public cloud, such as Amazon AWS, Google GCP, or Microsoft Azure to scale analytic workloads directly on data on-premises without copying and synchronizing the data into the cloud. We will show an example of what it might look like to run on-demand Presto and Hive with Alluxio in the public cloud using on-prem HDFS. We will also show how to set up and execute performance benchmarks in two geographically dispersed Amazon EMR clusters along with a summary of our findings.

Tags: , , , , , , , , , ,

Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio

Alluxio Global Online Meetup *

Today, many people run deep learning applications with training data from separate storage such as object storage or remote data centers. This presentation will demo the Intel Analytics Zoo + Alluxio stack, an architecture that enables high performance while keeping cost and resource efficiency balanced without network being I/O bottlenecked.

Burst Presto & Spark workloads to AWS EMR with no data copies

Community Online Office Hour *

In this talk, we will show you how to leverage any public cloud (AWS, Google Cloud Platform, or Microsoft Azure) to scale analytics workloads directly on on-prem data without copying and synchronizing the data into the cloud.

Bursting Apache Spark Workloads to the Cloud on Remote Data

Accessing data to run analytic workloads in Spark across data centers and/or clouds can be challenging. Additionally, network I/O can bottleneck Spark jobs that need to read a large amount of data. A common solution is to deploy an HDFS cluster closer to Spark as a caching layer and manually copy the input data to HDFS first, purging it afterward. But this ETL process can be both time-consuming and also error-prone.

Tags: , , , , ,