Alluxio (formerly Tachyon): Open Source Memory Speed Virtual Distributed Storage System

Data by the Bay San Francisco *

The goal is to make Alluxio accessible to an even wider set of users through a focus on security, new language bindings, and further increased stability. In addition, the team is working on new APIs to allow applications to access data more efficiently and manage data across different under storage systems.

1st Beijing Alluxio (Formerly Tachyon) Meetup

Beijing Meetup *

In the active community development of the past year, Alluxio has greatly improved its read and write performance, scalability and user experience. In addition, in terms of functionality, Alluxio has added a number of new features, such as scalable tiered storage, transparent UFS data reading and writing, unified namespaces, and more. These features bring more value to Alluxio users and more efficient and convenient cluster storage management.

Past, Present and Future of Alluxio [Chinese]

Nanjing Big Data Meetup *

The Alluxio project has greatly improved system performance, Scalability and user experience, and added a series of new features, including scalable tiered storage, transparent UFS data reading and writing, unified namespaces, and more. Easy to use with Alluxio. At the same time, the Alluxio ecosystem has expanded to support different storage systems and computing frameworks. Alluxio now supports a variety of storage systems, including Amazon S3, Google Cloud Storage, Gluster, Ceph, HDFS, NFS and OpenStack Swift, as well as big data processing frameworks such as Spark, MapReduce, Flink and more. These integrations allow Alluxio to manage and help with more and more complex data.

Past, Present and Future of Alluxio [Chinese]

Shanghai Meetup *

The Alluxio project has greatly improved system performance, Scalability and user experience, and added a series of new features, including scalable tiered storage, transparent UFS data reading and writing, unified namespaces, and more. Easy to use with Alluxio. At the same time, the Alluxio ecosystem has expanded to support different storage systems and computing frameworks. Alluxio now supports a variety of storage systems, including Amazon S3, Google Cloud Storage, Gluster, Ceph, HDFS, NFS and OpenStack Swift, as well as big data processing frameworks such as Spark, MapReduce, Flink and more. These integrations allow Alluxio to manage and help with more and more complex data.

Alluxio (formerly Tachyon): The journey thus far and the road ahead

Strata+Hadoop World New York *

The goal is to make Alluxio accessible to an even wider set of users through a focus on security, new language bindings, and further increased stability. In addition, the team is working on new APIs to allow applications to access data more efficiently and manage data across different under storage systems.

Alluxio: Unifying APIs, Accelerating ML, & Enabling Cloud Architectures

Bay Area Meetup *

Using intermediate APIs means developers can learn just one framework and still access features offered by different technologies. It means writing job logic only once and being able to test it easily on a new underlying service with no effort. Not only is modularity a win for users but it means creators of execution frameworks and storage systems can focus on performance and capability without having to worry about API maintenance.

How Alluxio (formerly Tachyon) brings a 300x performance improvement to Qunar’s streaming processing

Strata+Hadoop World Singapore *

Alluxio is the first memory-speed virtual distributed storage system in the world. It unifies the interface between the various computing frameworks and under storages. Data access can be several magnitude faster because of Alluxio’s memory-centric architecture. In addition, Alluxio’s tiered storage, unified namespace, flexible file API, web UI, and command-line tools increase the usability in different application scenarios.
Qunar has been running Alluxio in production for over a year. Lei Xu explores how stream processing on Alluxio has led to a 16x performance improvement on average and 300x improvement at service peak time on workloads at Qunar.

Crash-Proofing Smartphones with Alluxio

Bay Area Meetup *

Enterprises typically store large amounts of data in existing storage systems, which are often separate from big data analytics systems. Therefore, importing petabytes of data into a big data analytics system takes a long time with large overheads and high costs. Even worse, transferring large amounts of data results in data silos and unnecessary duplication, which creates serious data management problems.