Using Alluxio as a Fault-tolerant Pluggable Optimization Component of JD.com’s Computation Frameworks

JD.com is China’s largest online retailer and its biggest overall retailer, as well as the country’s biggest internet company by revenue. Currently, JD.com’s BDP platform runs more than 400,000 jobs (15+ PB) daily, on a system with more than 15,000 cluster nodes and a total capacity of 210 PB.

Alluxio has run in JD.com’s production environment on 100 nodes for six months. See how JD.com uses Alluxio to provide support for ad hoc and real-time stream computing, using Alluxio-compatible HDFS URLs and Alluxio as a pluggable optimization component.

Tags: , , , , ,

TalkingData Case Study: Leading Data Broker in China Leverages Alluxio to Unify Terabytes of Data Across Disparate Data Sources

TalkingData’s largest data broker, provides data intelligence solutions and processes over 20 terabytes of data and more than one billion session requests per day. TalkingData deployed Alluxio to unify disparate cloud, on-premise, and hybrid data sources for a range of analytics applications. The architecture provides self-service data access for data scientists and engineers, eliminating the need for ETL or manual IT assistance.

Tags: , , , ,

TalkingData Case Study: Leading Data Broker in China Leverages Alluxio to Unify Terabytes of Data Across Disparate Data Sources

TalkingData leverages Alluxio as a single platform to manage all the data across disparate data sources on-premise and in the cloud. Alluxio removes the complexity of our environment by abstracting the different data sources and providing a unified interface. Applications simply interact with Alluxio, and Alluxio manages data access to different storage systems on behalf of the applications. Alluxio effectively democratizes data access, allowing data scientists and analysts in various business units to accomplish their goals without needing to consider where the data is located or having to go to central IT or the engineering team to transfer or prepare the data.

Myntra Case Study: Accelerating Analytics in the Cloud for Mobile E-Commerce

Myntra, a division of Flipkart, is a leading fashion retailer in India offering customers a wide range of merchandise through a mobile application. An analytics pipeline in Amazon Web Services (AWS) cloud processes customer data to make recommendations, present ads, and deliver other aspects of a tailored experience. Myntra deployed Alluxio to provide a virtual data layer connecting AWS S3 to the analytics pipeline to accelerate data access and enable faster customer response and interactive business intelligence.

Tags: , ,

Tencent Case Study: Delivering Customized News to Over 100 Million Montly Users

Tencent, based in China, is one of the largest technology companies in the world and a leader in sectors such as social networking, gaming, ecommerce, mobile, and web portal. Tencent News provides a rich, tailored news experience to over 100 million active monthly users. In order to meet the strict Service Level Agreements (SLAs) required by the business for optimal customer experience, the company turned to Alluxio for performance, predictability, and scalability.

Tags: , ,

Tencent Case Study: Delivering Customized News to Over 100 Million Users per Month with Alluxio

Tencent is one of the largest technology companies in the world and a leader in multiple sectors such as social networking, gaming, e-commerce, mobile and web portal. Tencent News, one of Tencent’s many offerings, strives to create a rich, timely news application to provide users with an efficient, high-quality reading experience. To provide the best experience to more than 100 million monthly active users of Tencent News, we leverage Alluxio with Apache Spark to create a scalable, robust, and performant architecture.

MOMO: Accelerating Ad Hoc Analysis with Spark SQL and Alluxio

Alluxio clusters act as a data access accelerator for remote data in connected storage systems. Temporarily storing data in memory, or other media near compute, accelerates access and provides local performance from remote storage. This capability is even more critical with the movement of compute applications to the cloud and data being located in object stores separate from compute. Caching is transparent to users, using read/write buffering to maintain continuity with persistent storage. Intelligent cache management utilizes configurable policies for efficient data placement and supports tiered storage for both memory and disk (SSD/HDD).