Interactive Big Data Analytics with the Presto + Alluxio stack for the Cloud

Alluxio Tech Talk *

In this tech talk, we will introduce the Starburst Presto, Alluxio, and Cloud object store stack for building a highly-concurrent and low-latency analytics platform. This stack provides a strong solution to run fast SQL across multiple storage systems including HDFS, S3 and others in public cloud, hybrid cloud and multi cloud environments.

Top 10 Tips for Making the Spark + Alluxio Stack Blazing Fast

The Apache Spark + Alluxio stack is getting quite popular particularly for the unification of data access across S3 and HDFS. In addition, compute and storage are increasingly being separated causing larger latencies for queries. Alluxio is leveraged as compute-side virtual storage to improve performance. But to get the best performance, like any technology stack, you need to follow the best practices. This article provides the top 10 tips for performance tuning for real-world workloads when running Spark on Alluxio with data locality giving the most bang for the buck.

Effective caching for Spark RDDs with Alluxio

Recently, Qunar deployed Alluxio with Spark in production and found that Alluxio enables Spark streaming jobs to run 15x to 300x faster. In their case study, they described how Alluxio improved their system architecture, and mentioned that some existing Spark jobs would slow down or would never finish because they would run out of memory. After using Alluxio, those jobs were able to finish, because the data could be stored in Alluxio, instead of within Spark.
In this blog, we show by saving RDDs in Alluxio, Alluxio can keep larger data sets in-memory for faster Spark applications, as well as enable sharing of RDDs across separate Spark applications.

Data Location Awareness: Optimize Performance and Lower Cost with Tiered Locality

Caching frequently used data in memory is not a new computing technique, however it is a concept that Alluxio has taken to the next level with the ability to aggregate data from multiple storage systems in a unified pool of memory. Alluxio capabilities extend further to intelligently managing the data within that virtual data layer. Tiered locality uses awareness of network topology and configurable policies to manage data placement for performance and cost optimizations. This feature is particularly useful with cloud deployments across multiple availability zones. It can also be useful for cost savings in environments where cross-zone or cross-location traffic is more expensive than intra-zone data traffic.

Asynchronous Caching in Alluxio – High Performance for Partial Read Caching for Presto and Spark

An Alluxio cluster caches data from connected storage systems in memory to create a data layer that can be accessed concurrently by multiple application frameworks. This greatly improves performance for many analytics workloads. On-demand caching occurs when clients read blocks of data using a ‘CACHE’ read type from persistent storage systems connected to the Alluxio cluster.
Prior to Alluxio v1.7, on-demand caching was on the critical path of read operations, requiring a full block to be read before the data was available for the application. Workloads which read partial blocks, for example SQL workloads, would be adversely affected on initial reads from connected storage.

Whitepaper: MOMO – Accelerating Ad Hoc Analysis with Spark SQL and Alluxio

From our friends at MOMO The hadoop ecosystem makes many distributed system/algorithms easier to use and generally lowers the cost of operations. However, enterprises and vendors are never satisfied with that, so higher performance becomes the next issue. We considered several options to address our performance needs and focused our efforts on Alluxio, which improves performance … Continued

Tags: , , , , ,

Lenovo Case Study: Analytics on Data from Multiple Locations and Eliminating ETL

Lenovo is an Alluxio customer with a common problem and use case in the world of data analytics. They have petabytes of data in multiple data centers in different geographic locations. Analyzing it requires an ETL process to get all of the data in the right place. This is both slow, because data has to be transferred across the network, and costly because multiple copies of the data need to be stored. Freshness and quality of the data can also suffer as the data is also potentially out of date and incomplete because regulatory issues prevent certain data from being transferred.

Apache Spark DataFrame caching with Alluxio

Many organizations deploy Alluxio together with Spark for performance gains and data manageability benefits. Qunar recently deployed Alluxio in production, and their Spark streaming jobs sped up by 15x on average and up to 300x during peak times. They noticed that some Spark jobs would slow down or would not finish, but with Alluxio, those jobs could finish quickly. In this blog post, we investigate how Alluxio helps Spark be more effective. Alluxio increases performance of Spark jobs, helps Spark jobs perform more predictably, and enables multiple Spark jobs to share the same data from memory.

Tags: , , , ,