Data Location Awareness: Optimize Performance and Lower Cost with Tiered Locality

Caching frequently used data in memory is not a new computing technique, however it is a concept that Alluxio has taken to the next level with the ability to aggregate data from multiple storage systems in a unified pool of memory. Alluxio capabilities extend further to intelligently managing the data within that virtual data layer. Tiered locality uses awareness of network topology and configurable policies to manage data placement for performance and cost optimizations. This feature is particularly useful with cloud deployments across multiple availability zones. It can also be useful for cost savings in environments where cross-zone or cross-location traffic is more expensive than intra-zone data traffic.

MOMO: Accelerating Ad Hoc Analysis with Spark SQL and Alluxio

Alluxio clusters act as a data access accelerator for remote data in connected storage systems. Temporarily storing data in memory, or other media near compute, accelerates access and provides local performance from remote storage. This capability is even more critical with the movement of compute applications to the cloud and data being located in object stores separate from compute. Caching is transparent to users, using read/write buffering to maintain continuity with persistent storage. Intelligent cache management utilizes configurable policies for efficient data placement and supports tiered storage for both memory and disk (SSD/HDD).

Hedge Fund Improves Machine Learning Model Performance 4X with Alluxio

Quantitative hedge funds process large data sets with sophisticated financial models to drive investment decisions. Machine Learning is used to continuously improve models and maximize financial return. One firm with billions ($US) of assets under management turned to Alluxio to address the performance and cost challenges of large scale data processing in a hybrid cloud environment. With Alluxio, the number of model runs per day increased by 4x and the cost of compute was reduced by 95%.

Tags: , , ,

Enabling Decoupled Compute and Storage with Alluxio

The primary appeal of a coupled compute-storage architecture, an architecture where the computation is happening on the machines where the data resides, is the performance possible by bringing the compute engine to the data it requires; however, the costs of maintaining such tight-knit architectures are gradually overtaking the performance benefits. Especially with the popularity of cloud resources, being able to independently scale compute and storage results in large cost savings and cheaper maintenance. In addition, data has become the new oil, and all modern organizations are looking to capture as much data as possible.

Accelerating Cloud Pipelines with Alluxio and Fast Durable Writes

Using Alluxio, data can be shared between pipeline stages at memory speed. By reading and writing data in Alluxio, the data can stay in memory for the next stage of the pipeline, and this can greatly increase the performance. Alluxio Enterprise Edition (AEE) introduces Fast Durable Writes, a feature which enables low latency and fault-tolerant writes. In this article, we describe the Fast Durable Writes feature, and explore how Alluxio can be deployed and used with a data pipeline.

Flexible and Fast Storage for Deep Learning with Alluxio

In the age of growing datasets and increased computing power, deep learning has become a popular technique for AI. Deep learning models continue to improve their performance across a variety of domains, with access to more and more data, and the processing power to train larger neural networks. This rise of deep learning advances the state-of-the-art for AI, but also exposes some challenges for the access to data and storage systems. In this article, we further describe the storage challenges for deep learning workloads and how Alluxio can help to solve them.

Using Alluxio to Improve the Performance and Consistency of HDFS Clusters

Alluxio is the world’s first memory-speed virtual distributed storage system that bridges applications and underlying storage systems, providing unified data access orders of magnitudes faster than existing solutions. The Hadoop Distributed File System (HDFS) is a distributed file system for storing large volumes of data. HDFS popularized the paradigm of bringing computation to data and the co-located compute and storage architecture.
In this blog, we highlight two key benefits Alluxio brings to a compute cluster co-located with HDFS.