How to Build a new Under Filesystem in Alluxio: Apache Ozone as an Example

In Alluxio, an Under File System is the plugin to connect to any file systems or object stores, so users can mount different storages like AWS S3 or HDFS into Alluxio namespace. This under filesystem is designed to be modular, in order to enable users to easily extend this framework with their own Under File System implementation and connect to a new or customized storage system.

Tags: , , , , , ,

Bursting Spark or Presto Jobs to AWS using Alluxio

In this office hour, we demonstrate how a “zero-copy burst” solution helps to speed up Spark and Presto queries in the public cloud while eliminating the process of manually copying and synchronizing data from the on-premise data lake to cloud storage. This approach allows compute frameworks to decouple from on-premise data sources and scale efficiently by leveraging Alluxio and public cloud resources such as AWS.

Tags: , , , , , , , , ,

Tech Talk: Build a hybrid data lake and burst processing to Google Cloud Dataproc with Alluxio

Join us for this tech talk where we will show you how Alluxio can help burst your private computing environment to Google Cloud, minimizing costs and I/O overhead. Alluxio coupled with Google’s open source data and analytics processing engine, Dataproc, enables zero-copy burst for faster query performance in the cloud so you can take advantage of resources that are not local to your data, without the need for managing the copying or syncing of that data.

Tags: , , , ,

Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio

Today, many people run deep learning applications with training data from separate storage such as object storage or remote data centers. This presentation will demo the Intel Analytics Zoo + Alluxio stack, an architecture that enables high performance while keeping cost and resource efficiency balanced without network being I/O bottlenecked.

Tags: , , , , , , ,

Optimizing Query Performance by Decoupling Presto and Hive Data Warehouse

Ideally, Presto would access data independently from how the data was originally stored or managed. Alluxio, as a data orchestration layer provides the physical data independence, for Presto to interact with the data more efficiently. In addition to caching for IO acceleration, Alluxio also provides a catalog service to abstract the metadata in the Hive Metastore, and transformations to expose the data in compute-optimized way. In this talk, we describe some of the challenges of using Presto with Hive, and introduce Alluxio data orchestration for solving those challenges.

Tags: , , , , , , ,

Bursting Apache Spark Workloads to the Cloud on Remote Data

Accessing data to run analytic workloads in Spark across data centers and/or clouds can be challenging. Additionally, network I/O can bottleneck Spark jobs that need to read a large amount of data. A common solution is to deploy an HDFS cluster closer to Spark as a caching layer and manually copy the input data to HDFS first, purging it afterward. But this ETL process can be both time-consuming and also error-prone.

Tags: , , , , ,