Building a high-performance data lake analytics engine at Alibaba Cloud with Presto+Alluxio

Data Lake Analytics(DLA) is a large scale serverless data federation service on Alibaba Cloud. One of its serverless analytics engine is based on Presto. The DLA Presto engine supports a variety of data sources and is widely used in different application scenarios in the cloud. In this session, we will talk about the system architecture of DLA Presto engine, as well as the challenges and solutions. In particular, we will introduce the use of alluxio local cache to solve performance issues on OSS data sources caused by access delay and OSS bandwidth limitation. We will discuss the principle of alluxio local cache and some improvements we have made.

Tags: , , , , ,

Introducing what’s new in Alluxio 2.5

Alluxio 2.5 focuses on improving interface support to broaden the set of data driven applications which can benefit from data orchestration. The POSIX and S3 client interfaces have greatly improved in performance and functionality as a result of the widespread usage and demand from AI/ML workloads and system administration needs. Alluxio is rapidly evolving to meet the needs of enterprises that are deploying it as a key component of their AI/ML stacks.

Tags: , , , ,

Accelerate Analytics and ML in the Hybrid Cloud Era

Many companies we talk to have on premises data lakes and use the cloud(s) to burst compute. Many are now establishing new object data lakes as well. As a result, running analytics such as Hive, Spark, Presto and machine learning are experiencing sluggish response times with data and compute in multiple locations. We also know there is an immense and growing data management burden to support these workflows.

Tags: , , , ,