Alluxio at Spark Summit EU 2017

Tags: , , , , , , , , , ,

Best Practices for Using Alluxio with Apache Spark

Alluxio, formerly Tachyon, is a memory speed virtual distributed storage system and leverages memory for storing data and accelerating access to data in different storage systems. Many organizations and deployments use Alluxio with Apache Spark, and some of them scale out to over PB’s of data. Alluxio can enable Spark to be even more effective, in both on-premise deployments and public cloud deployments. Alluxio bridges Spark applications with various storage systems and further accelerates data intensive applications. In this talk, we briefly introduce Alluxio, and present different ways how Alluxio can help Spark jobs. We discuss best practices of using Alluxio with Spark, including RDDs and DataFrames, as well as on-premise deployments and public cloud deployments.

Spark Pipelines in the Cloud with Alluxio

Organizations commonly use Apache Spark to gain actionable insight from their large amounts of data. Often, these analytics are in the form of data processing pipelines, where there are a series of processing stages, and each stage performs a particular function, and the output of one stage is the input of the next stage. There are several examples of pipelines, such as log processing, IoT pipelines, and machine learning. The common attribute among different pipelines is the sharing of data between stages. It is also common for Spark pipelines to process data stored in the public cloud, such as Amazon S3, Microsoft Azure Blob Storage, or Google Cloud Storage. The global availability and cost effectiveness of these public cloud storage services make them the preferred storage for data. However, running pipeline jobs while sharing data via cloud storage can be expensive in terms of increased network traffic, and slower data sharing and job completion times. Using Alluxio, a memory speed virtual distributed storage system, enables sharing data between different stages or jobs at memory speed. By reading and writing data in Alluxio, the data can stay in memory for the next stage of the pipeline, and this result in great performance gains. In this talk, we discuss how Alluxio can be deployed and used with a Spark data processing pipeline in the cloud. We show how pipeline stages can share data with Alluxio memory for improved performance benefits, and how Alluxio can improves completion times and reduces performance variability for Spark pipelines in the cloud.