When training models on ultra-large datasets, one of the biggest challenges is low GPU utilization. These powerful processors are often underutilized due to inefficient I/O and data access. This mismatch between computation and storage leads to wasted GPU resources, low performance, and high cloud storage costs. The rise of generative AI and GPU scarcity is only making this problem worse.
In this webinar, Tarik and Beinan discuss strategies for transforming idle GPUs into optimal powerhouses. They will focus on cost-effective management of ultra-large datasets for AI and analytics.
What you will learn:
- The challenges of I/O stalls leading to low GPU utilization for model training
- High-performance, high-throughput data access (I/O) strategies
- The benefits of using an on-demand data access layer over your storage
- How Uber addresses managing ultra-large datasets using high-density storage and caching