Running Alluxio On HashiCorp Nomad

I recently worked on a PoC evaluating Nomad for a client. Since there were certain constraints limiting what was possible on the client environment, I put together something “quick” on my personal workstation to see what was required for Alluxio to play nice with Nomad.

Four Different Ways to Write to Alluxio

Alluxio is a new layer on top of under storage systems that can not only improve raw I/O performance but also enables applications flexible options to read, write and manage files. This article focuses on describing different ways to write files to Alluxio, realizing the tradeoffs in performance, consistency, and also the level of fault tolerance compared to HDFS.

Creating Grafana Dashboards to Visualize Alluxio Metrics

Grafana, a comprehensive metrics visualization software, ties into this process by pulling the metrics that systems like Alluxio collect through a sink and visualizes them in a more helpful fashion. This guide will cover how to set up Grafana and Graphite, a supported sink for Alluxio that will put metrics in a time-series database, along with exploring some of the possibilities that the combination offers.

Accelerating Write-intensive Data Workloads on AWS S3

Alluxio is an open-source data orchestration system widely used to speed up data-intensive workloads in the cloud. Alluxio v2.0 introduced Replicated Async Write to allow users to complete writes to Alluxio file system and return quickly with high application performance, while still providing users with peace of mind that data will be persisted to the chosen under storage like S3 in the background.

Getting Started with the Alluxio-Presto Sandbox

The Alluxio-Presto sandbox is a docker application featuring installations of MySQL, Hadoop, Hive, Presto, and Alluxio. The sandbox lets you easily dive into an interactive environment where you can explore Alluxio, run queries with Presto, and see the performance benefits of using Alluxio in a big data software stack.

Hybrid Environments for Data Analytics is a Possibility

As the data ecosystem becomes massively complex and more and more disaggregated, data analysts and end users have trouble adapting and working with hybrid environments. The proliferation of compute applications along with storage mediums leads to a hybrid model that we are just not accustomed to.
With this disaggregated system data engineers now come across a multitude of problems that they must overcome in order to get meaningful insights.

Effective Data Engineering in the Cloud World

Cloud has changed the dynamics of data engineering as well as the behavior of data engineers in many ways. This is primarily because a data engineer on premise only dealt with databases and some parts of the hadoop stack.
In the cloud, things are a bit different. Data engineers suddenly need to think different and broader. Instead of being purely focused on data infrastructure, you are now almost a full stack engineer (leaving out the final end application perhaps). Compute, containers, storage, data movement, performance, network — skills are increasing needed across the broader stack. Here are some design concept and data stack elements to keep in mind.