What’s New in Alluxio 2.6: Better Performance for AI/ML Workloads plus Increased Operating Metrics Visibility

Alluxio 2.6 significantly improves the performance of data-intensive AI/ML workloads across any storage, and also improves the general maintainability and visibility of Alluxio clusters, especially for large-scale deployments. We have taken the feedback and contributions from the community and introduced features which simplify deployment, introduce new data management capabilities, optimize performance, and provide enhanced visibility into system behavior.

What’s new in Alluxio 2.5

Alluxio 2.5 focuses on improving interface support to broaden the set of data driven applications which can benefit from data orchestration. The POSIX and S3 client interfaces have greatly improved in performance and functionality as a result of the widespread usage and demand from AI/ML workloads and system administration needs. Alluxio is rapidly evolving to meet the needs of enterprises that are deploying it as a key component of their AI/ML stacks.

Bursting Your On-Premises Data Lake Analytics and AI Workloads on AWS

This post outlines a solution for building a hybrid data lake with Alluxio to leverage analytics and AI on Amazon Web Services (AWS) alongside a multi-petabyte on-premises data lake. Alluxio’s solution is called “zero-copy” hybrid cloud, indicating a cloud migration approach without first copying data to Amazon Simple Storage Service (Amazon S3).

Running Presto in a Hybrid Cloud Architecture

Migrating SQL workloads from a fully on-premise environment to cloud infrastructure has numerous benefits, including alleviating resource contention and reducing costs by paying for computation resources on an on-demand basis. In the case of Presto running on data stored in HDFS, the separation of compute in the cloud and storage on-premises is apparent since Presto’s … Continued

Introducing Alluxio 2.3

Alluxio 2.3.0 focuses on streamlining the user experience in hybrid cloud deployments where Alluxio is deployed with compute in the cloud to access data on-prem. Features such as environment validation tools and concurrent metadata synchronization greatly improve Alluxio’s functionality. Integrations with AWS EMR, Google Dataproc, K8s, and AWS Glue make Alluxio easy to use in a variety of cloud environments. In this article, we will share some of the highlights of the release. For more, please visit our release notes page.

Improving Spark Memory Resource with Off-Heap In-Memory Storage

In the previous tutorial ”Getting Started with Spark Caching using Alluxio in 5 Minutes”, we demonstrated how to get started with Spark and Alluxio. To share more thoughts and experiments on how Alluxio enhances Spark workloads, this article focuses on how Alluxio helps to optimize the memory utilization of Spark applications.  For users who are … Continued

Creating Grafana Dashboards to Visualize Alluxio Metrics

Grafana, a comprehensive metrics visualization software, ties into this process by pulling the metrics that systems like Alluxio collect through a sink and visualizes them in a more helpful fashion. This guide will cover how to set up Grafana and Graphite, a supported sink for Alluxio that will put metrics in a time-series database, along with exploring some of the possibilities that the combination offers.

Hybrid Environments for Data Analytics is a Possibility

As the data ecosystem becomes massively complex and more and more disaggregated, data analysts and end users have trouble adapting and working with hybrid environments. The proliferation of compute applications along with storage mediums leads to a hybrid model that we are just not accustomed to.
With this disaggregated system data engineers now come across a multitude of problems that they must overcome in order to get meaningful insights.